每週問題 January 17, 2011

本週問題是證明對於任意方陣 A,必存在一可逆矩陣 B 使得 BA 為投影矩陣。

Pow-Jan-17-11

參考解答

PowSol-Jan-17-11

Advertisement
This entry was posted in pow 向量空間, 每週問題 and tagged . Bookmark the permalink.

2 Responses to 每週問題 January 17, 2011

  1. levinc says:

    請問 A需要對稱嗎?

  2. ccjou says:

    A 不必是對稱矩陣,問題只要求 BA 是投影矩陣,但未必是正交投影。設 \{v_1,v_2,\ldots,v_n\}\mathbb{R}^n 基底,證明 BAv_i=v_ii=1,\ldots,k,且 BAv_j=0j=k+1,k+2,\ldots,n 即等於證出 BA 是投影矩陣。

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s