Vandermonde 矩陣的逆矩陣公式

本文的閱讀等級:初級

考慮下列 n\times n 階 Vandermonde 矩陣

\begin{bmatrix}  1&1&\cdots&1\\  x_1&x_2&\cdots&x_n\\  x_1^2&x_2^2&\cdots&x_n^2\\  \vdots&\vdots&\vdots&\vdots\\  x_1^{n-1}&x_2^{n-1}&\cdots&x_n^{n-1}  \end{bmatrix}

記為 V_n(x_1,\ldots,x_n)V=[v_{ij}],其中 v_{ij}=x_j^{i-1}。Vandermonde 矩陣 V 有一個簡單的行列式公式,如下 (見“特殊矩陣 (8):Vandermonde 矩陣”):

\displaystyle  \det V=\prod_{1\le j<i\le n}(x_i-x_j)

x_1,\ldots,x_n 互異時,\det V\neq 0V 是可逆矩陣。本文利用伴隨 (adjugate) 矩陣及行列式公式推導 Vandermonde 矩陣 V 的逆矩陣。

 
\mathrm{adj}V 為 Vandermonde 矩陣 V 的伴隨矩陣,其 (i,j) 元即為 v_{ji} 的餘因子 (cofactor) c_{ji},如下 (見“行列式的運算公式與性質”):

c_{ji}=(-1)^{i+j}\det\tilde{V}_{ji}

其中 \tilde{V}_{ji} 代表移除 V 的第 j 列和第 i 行後得到的 (n-1)\times(n-1) 階子陣。方陣 V 與其伴隨矩陣 \mathrm{adj}V 具有下列關係:

V(\mathrm{adj}V)=(\det V)I

V 可逆,即得

\displaystyle  V^{-1}=\frac{1}{\det V}\mathrm{adj}V

n=3 為例,

\begin{aligned}  \mathrm{adj}V&=\begin{bmatrix}  \begin{vmatrix}  x_2&x_3\\  x_2^2&x_3^2  \end{vmatrix}&-\begin{vmatrix}  1&1\\  x_2^2&x_3^2  \end{vmatrix}&\begin{vmatrix}  1&1\\  x_2&x_3  \end{vmatrix}\\  -\begin{vmatrix}  x_1&x_3\\  x_1^2&x_3^2  \end{vmatrix}&\begin{vmatrix}  1&1\\  x_1^2&x_3^2  \end{vmatrix}&-\begin{vmatrix}  1&1\\  x_1&x_3  \end{vmatrix}\\  \begin{vmatrix}  x_1&x_2\\  x_1^2&x_2^2  \end{vmatrix}&-\begin{vmatrix}  1&1\\  x_1^2&x_2^2  \end{vmatrix}&\begin{vmatrix}  1&1\\  x_1&x_2  \end{vmatrix}  \end{bmatrix}\\  &=\begin{bmatrix}  x_2x_3(x_3-x_2)&-(x_3^2-x_2^2)&x_3-x_2\\  -x_1x_3(x_3-x_1)&x_3^2-x_1^2&-(x_3-x_1)\\  x_1x_2(x_2-x_1)&-(x_2^2-x_1^2)&x_2-x_1  \end{bmatrix},\end{aligned}

\det V=(x_3-x_1)(x_3-x_2)(x_2-x_1),也就得到逆矩陣

V^{-1}=\begin{bmatrix}  \frac{x_2x_3}{(x_2-x_1)(x_3-x_1)}&-\frac{x_2+x_3}{(x_2-x_1)(x_3-x_1)}&\frac{1}{(x_2-x_1)(x_3-x_1)}\\[0.3em]  \frac{x_1x_3}{(x_1-x_2)(x_3-x_2)}&-\frac{x_1+x_3}{(x_1-x_2)(x_3-x_2)}&\frac{1}{(x_1-x_2)(x_3-x_2)}\\[0.3em]  \frac{x_1x_2}{(x_1-x_3)(x_2-x_3)}&-\frac{x_1+x_2}{(x_1-x_3)(x_2-x_3)}&\frac{1}{(x_1-x_3)(x_2-x_3)}  \end{bmatrix}

 
運用同樣方法也可以導出 n\times n 階 Vandermonde 矩陣的逆矩陣。下面我們將移除 V 的第 j 列和第 i 行所得的 (n-1)\times (n-1) 階子陣表示為

\tilde{V}_{ji}=\begin{bmatrix}  1&1&\cdots&1&1&\cdots&1\\  x_1&x_2&\cdots&x_{i-1}&x_{i+1}&\cdots&x_n\\  \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\  x_1^{j-2}&x_2^{j-2}&\cdots&x_{i-1}^{j-2}&x_{i+1}^{j-2}&\cdots&x_n^{j-2}\\  x_1^{j}&x_2^{j}&\cdots&x_{i-1}^{j}&x_{i+1}^{j}&\cdots&x_n^{j}\\  \vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\  x_1^{n-1}&x_2^{n-1}&\cdots&x_{i-1}^{n-1}&x_{i+1}^{n-1}&\cdots&x_n^{n-1}  \end{bmatrix}=W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)

對於 i,j=1,\ldots,n

c_{ji}=(-1)^{i+j}\det W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)

故逆矩陣的各元為

\displaystyle  (V^{-1})_{ij}=\frac{c_{ji}}{\det V}=(-1)^{i+j}\frac{\det W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)}{\det V}

解出 V^{-1} 的首要工作在於設法化簡 n-1 階行列式 \det W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)n 階行列式 \det V。注意,W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) 並非 n-1 階 Vandermonde 矩陣。觀察發現 W^{(j-1)}_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)V_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) 的主要差別在於前者不含 (x_1^{j-1},\ldots,x_{i-1}^{j-1},x_{i+1}^{j-1},\ldots,x_n^{j-1}),而後者則缺 (x_1^{n-1},\ldots,x_{i-1}^{n-1},x_{i+1}^{n-1},\ldots,x_n^{n-1})。揭開這兩個矩陣的行列式關係即可消去 (V^{-1})_{ij} 的分子和分母所含的行列式。

 
為了方便,下面我們將長度為 n-1 的序列 (x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) 替換為 (z_1,\ldots,z_{n-1})。考慮 n\times n 階 Vandermonde 矩陣 V_{n}(z_1,\ldots,z_{n-1},t),也就有

\det V_{n}(z_1,\ldots,z_{n-1},t)=\begin{vmatrix}  1&1&\cdots&1&1\\  z_1&z_2&\cdots&z_{n-1}&t\\  z_1^2&z_2^2&\cdots&z_{n-1}^2&t^2\\  \vdots&\vdots&\vdots&\vdots&\vdots\\  z_1^{n-1}&z_2^{n-1}&\cdots&z_{n-1}^{n-1}&t^{n-1}  \end{vmatrix}

利用 Vandermonde 矩陣的行列式公式,區分兩種情況:i\le n-1i=n,立得

\displaystyle\begin{aligned}  \det V_{n}(z_1,\ldots,z_{n-1},t)&=\left(\prod_{1\le j<i\le n-1}(z_i-z_j)\right)\cdot\prod_{1\le j\le n-1}(t-z_j)\\  &=\det V_{n-1}(z_1,\ldots,z_{n-1})\cdot\prod_{1\le j\le n-1}(t-z_j),\end{aligned}

以下稱為第一表達式。另一方面,針對 V_{n}(z_1,\ldots,z_{n-1},t) 的最末行計算 Laplace 展開式 (見“行列式的運算公式與性質”),可得

\begin{aligned}  \det V_{n}(z_1,\ldots,z_{n-1},t)&=\begin{vmatrix}  1&1&\cdots&1\\  z_1&z_2&\cdots&z_{n-1}\\  \vdots&\vdots&\vdots&\vdots\\  z_1^{n-2}&z_2^{n-2}&\cdots&z_{n-1}^{n-2}  \end{vmatrix}t^{n-1}-\begin{vmatrix}  1&1&\cdots&1\\  \vdots&\vdots&\vdots&\vdots\\  z_1^{n-3}&z_2^{n-3}&\cdots&z_{n-1}^{n-3}\\  z_1^{n-1}&z_2^{n-1}&\cdots&z_{n-1}^{n-1}  \end{vmatrix}t^{n-2}\\  &~~+\cdots+(-1)^{n+1}\begin{vmatrix}  z_1&z_2&\cdots&z_{n-1}\\  z_1^2&z_2^2&\cdots&z_{n-1}^2\\  \vdots&\vdots&\vdots&\vdots\\  z_1^{n-1}&z_2^{n-1}&\cdots&z_{n-1}^{n-1}  \end{vmatrix}\\  &=\det W_{n-1}^{(n-1)}(z_1,\ldots,z_{n-1})\cdot t^{n-1}-\det W_{n-1}^{(n-2)}(z_1,\ldots,z_{n-1})\cdot t^{n-2}\\  &~~+\cdots+(-1)^{n-1}\det W_{n-1}^{(0)}(z_1,\ldots,z_{n-1}),\end{aligned}

此為第二表達式。利用基本對稱函數 (elementary symmetric function,見“特徵多項式預藏的訊息”):

\displaystyle  \begin{aligned}  S_0(z_1,\ldots,z_{n-1})&=1\\  S_1(z_1,\ldots,z_{n-1})&=z_1+\cdots+z_{n-1}\\  S_2(z_1,\ldots,z_{n-1})&=\sum_{1\le p<q\le n-1}z_pz_q\\  \vdots&\\  S_k(z_1,\ldots,z_{n-1})&=\sum_{1\le p_1<p_2<\cdots<p_k\le n-1}z_{p_1}z_{p_2}\cdots z_{p_k}\\  \vdots&\\  S_{n-1}(z_1,\ldots,z_{n-1})&=z_1\cdots z_{n-1},\end{aligned}

不難驗證

\displaystyle\begin{aligned}  \prod_{1\le j\le n-1}(t-z_j)&=S_0(z_1,\ldots,z_{n-1})t^{n-1}-S_1(z_1,\ldots,z_{n-1})t^{n-2}\\  &~~+\cdots+(-1)^{n-1}S_{n-1}(z_1,\ldots,z_{n-1}),\end{aligned}

將上式代入第一表達式,再與第二表達式比較各項係數,可推得

\det W^{(k)}_{n-1}(z_1,\ldots,z_{n-1})=\det V_{n-1}(z_1,\ldots,z_{n-1})\cdot S_{n-1-k}(z_1,\ldots,z_{n-1})

其中 k=0,1,\ldots,n-1

 
利用上面得到的等式,以 j-1 取代 k(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n) 替換 (z_1,\ldots,z_{n-1}),餘因子 c_{ji} 可表示為

c_{ji}=(-1)^{i+j}\det V_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)\cdot S_{n-j}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)

再化簡 V^{-1},如下:

\displaystyle\begin{aligned}  (V^{-1})_{ij}&=(-1)^{i+j}\frac{\det V_{n-1}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)}{\det V_n(x_1,\ldots,x_n)}S_{n-j}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)\\  &=(-1)^{i+j}{S_{n-j}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)}\bigg/\left(\prod_{1\le k\le i-1}(x_i-x_k)\prod_{i+1\le k\le n}(x_k-x_i)\right)\\  &=(-1)^{j+1}{S_{n-j}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)}\bigg/\prod_{1\le k\le n\atop k\neq i}(x_k-x_i)\\  &=(-1)^{j+1}{\sum_{1\le p_1<\cdots<p_{n-j}\le n\atop p_1,\ldots,p_{n-j}\neq i}x_{p_1}x_{p_2}\cdots x_{p_{n-j}}}\bigg/{\prod_{1\le k\le n\atop k\neq i}(x_k-x_i)},\end{aligned}

最後一個步驟寫出基本對稱函數的完整表達式。

相關閱讀:
This entry was posted in 線性代數專欄, 行列式 and tagged , , , . Bookmark the permalink.

發表迴響

在下方填入你的資料或按右方圖示以社群網站登入:

WordPress.com Logo

你正使用 WordPress.com 帳號留言。 登出 / 變更 )

Twitter picture

你正使用 Twitter 帳號留言。 登出 / 變更 )

Facebook照片

你正使用 Facebook 帳號留言。 登出 / 變更 )

Google+ photo

你正使用 Google+ 帳號留言。 登出 / 變更 )

連結到 %s