每週問題 August 19, 2013

這是 Jordan 典型形式的相似證明問題。

Let

A=\begin{bmatrix}  \lambda&1&c\\  0&\lambda&1\\  0&0&\lambda  \end{bmatrix}~~~\textrm{and}~~~B=\begin{bmatrix}  \lambda&1&0\\  0&\lambda&1\\  0&0&\lambda  \end{bmatrix},

where c\neq 0. Show that A is similar to B.

 
參考解答:

我們的目標是設法找出一可逆矩陣 P 使得 PAP^{-1}=B。觀察發現 AB 有相同的領先二階主子陣,故可設

P=\begin{bmatrix}  1&0&x\\  0&1&y\\  0&0&1  \end{bmatrix}

計算相似變換:

\begin{aligned}  PAP^{-1}&=\begin{bmatrix}  1&0&x\\  0&1&y\\  0&0&1  \end{bmatrix}\begin{bmatrix}  \lambda&1&c\\  0&\lambda&1\\  0&0&\lambda  \end{bmatrix}\left[\!\!\begin{array}{ccr}  1&0&-x\\  0&1&-y\\  0&0&1  \end{array}\!\!\right]\\  &=\begin{bmatrix}  1&0&x\\  0&1&y\\  0&0&1  \end{bmatrix}\begin{bmatrix}  \lambda&1&-\lambda x-y+c\\  0&\lambda&-\lambda y+1\\  0&0&\lambda  \end{bmatrix}\\  &=\begin{bmatrix}  \lambda&1&-y+c\\  0&\lambda&1\\  0&0&\lambda  \end{bmatrix}.\end{aligned}

x 為任一數且 y=c,即得 PAP^{-1}=B,因此證明 A 相似於 B

Advertisement
This entry was posted in pow 典型形式, 每週問題 and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s