每週問題 March 31, 2014

這是證明半正定矩陣和 Hermitian 矩陣乘積的特徵值必為實數。

Let A and B be n\times n Hermitian matrices. Prove that following statements.

(a) If A or B is positive semidefinite, then all the eigenvalues of AB are real.
(b) If A and B are positive semidefinite, then all the eigenvalues of AB are nonnegative.


參考解答:

(a) 假設 AB 為 Hermitian,且 A 為半正定矩陣。寫出 A=\sqrt{A}\sqrt{A},其中 \sqrt{A} 也是 Hermitian 半正定矩陣。因為 AB=\sqrt{A}\left(\sqrt{A}B\right)\sqrt{A}B\sqrt{A} 有相同的特徵值,但 \sqrt{A}B\sqrt{A} 是 Hermitian 矩陣,其特徵值皆為實數,故 AB 有實特徵值。

(b) 假設 AB 是 Hermitian 半正定矩陣。對於任一非零向量 \mathbf{x}

\displaystyle  \mathbf{x}^\ast\sqrt{A}B\sqrt{A}\mathbf{x}=\left(\sqrt{A}\mathbf{x}\right)^\ast B\left(\sqrt{A}\mathbf{x}\right)\ge 0

\sqrt{A}B\sqrt{A} 是半正定矩陣,其特徵值皆為非負數。如 (a),AB\sqrt{A}B\sqrt{A} 有相同的非負特徵值,因此證得所求。

Advertisement
This entry was posted in pow 二次型, 每週問題 and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s