每週問題 October 19, 2015

這是可交換矩陣的多項式表達問題。

Let A and B be n\times n matrices such that AB=BA. If A has n distinct eigenvalues, show that B can be expressed uniquely as a polynomial in A with degree no more than n-1.

 
參考解答:

n\times n 階矩陣 A 的相異特徵值為 \lambda_1,\ldots,\lambda_n,對應線性獨立的特徵向量 \mathbf{x}_1,\ldots,\mathbf{x}_n,則 A 可對角化為 S^{-1}AS=\Lambda,其中 \Lambda=\hbox{diag}(\lambda_1,\ldots,\lambda_n)S=\begin{bmatrix}  \mathbf{x}_1&\cdots&\mathbf{x}_n  \end{bmatrix}。令 D=[d_{ij}]=S^{-1}BS。因為 AB=BA

\Lambda D=S^{-1}ASS^{-1}BS=S^{-1}ABS=S^{-1}BAS=S^{-1}BSS^{-1}AS=D\Lambda

比較等號兩邊的 (i,j) 元,\lambda_id_{ij}=d_{ij}\lambda_j。當 i\neq j\lambda_i\neq\lambda_j 推得 d_{ij}=0,可知 D 是對角矩陣。令 D=\hbox{diag}(\mu_1,\ldots,\mu_n)。考慮次數不大於 n-1 的多項式

p(t)=c_{n-1}t^{n-1}+\cdots+c_1t+c_0

滿足 p(\lambda_i)=\mu_ii=1,\ldots,n,或表示為線性聯立方程組:

\begin{aligned}  c_0+\lambda_1c_1+\cdots+\lambda_1^{n-1}c_{n-1}&=\mu_1\\  c_0+\lambda_2c_1+\cdots+\lambda_2^{n-1}c_{n-1}&=\mu_2\\  &\vdots\\  c_0+\lambda_nc_1+\cdots+\lambda_n^{n-1}c_{n-1}&=\mu_n.  \end{aligned}

因為 \lambda_1,\ldots,\lambda_n 互異,係數矩陣

\begin{bmatrix}  1&\lambda_1&\cdots&\lambda_1^{n-1}\\  1&\lambda_2&\cdots&\lambda_2^{n-1}\\  \vdots&\vdots&\ddots&\vdots\\  1&\lambda_n&\cdots&\lambda_n^{n-1}  \end{bmatrix}

(稱為 Vandermonde 矩陣) 可逆,線性方程組存在唯一解,換句話說,存在唯一的多項式 p 滿足 p(\Lambda)=\hbox{diag}(p(\lambda_1),\ldots,p(\lambda_n))=\hbox{diag}(\mu_1,\ldots,\mu_n)=D。使用上式,可得

p(A)=p(S\Lambda S^{-1})=Sp(\Lambda)S^{-1}=SDS^{-1}=B

Advertisement
This entry was posted in pow 特徵分析, 每週問題 and tagged , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s