每週問題 April 25, 2016

計算一個線性變換的跡數、行列式、特徵值與特徵向量。

Let \mathcal{V} be the vector space spanned by functions \cos(2x) and \sin(2x).
(a) Find the trace and determinant of the linear transformation D(f)=f' from \mathcal{V} to \mathcal{V}.
(b) Find the eigenvalues and corresponding eigenvectors of D.

 
參考解答:

(a) 寫出線性變換 D 參考有序基底 \boldsymbol{\beta}=\{\cos(2x),\sin(2x)\} 的表示矩陣:

\displaystyle \begin{aligned} \begin{bmatrix}D\end{bmatrix}_{\boldsymbol{\beta}}&=\begin{bmatrix}\begin{bmatrix}D(\cos(2x))\end{bmatrix}_{\boldsymbol{\beta}}&\begin{bmatrix}D(\sin(2x))\end{bmatrix}_{\boldsymbol{\beta}}\end{bmatrix}\\ &=\begin{bmatrix}\begin{bmatrix}-2\sin(2x)\end{bmatrix}_{\boldsymbol{\beta}}&\begin{bmatrix}2\cos(2x)\end{bmatrix}_{\boldsymbol{\beta}}\end{bmatrix}\\ &=\left[\!\!\begin{array}{rc}0&2\\-2&0\end{array}\!\!\right]. \end{aligned}

因此,\hbox{trace}D=\hbox{trace}[D]_{\boldsymbol{\beta}}=0\det D=\det [D]_{\boldsymbol{\beta}}=4。請注意,\hbox{trace} D\det D 不因所選擇的基底 \boldsymbol{\beta} 而改變。

(b) 考慮 [D]_{\boldsymbol{\beta}} 的特徵方程式

\displaystyle p(t)=\det\left([D]_{\boldsymbol{\beta}}-tI\right)=\begin{vmatrix}0-t&2\\-2&0-t\end{vmatrix}=t^2+4

p(t)=0 解得兩根 \lambda_1=2i\lambda_2=-2i,其中 i=\sqrt{-1},對應的特徵向量分別為 [\mathbf{f}_1]_{\boldsymbol{\beta}}=\begin{bmatrix}1\\i\end{bmatrix}[\mathbf{f}_2]_{\boldsymbol{\beta}}=\begin{bmatrix}1\\-i\end{bmatrix}。因此,D 的特徵值為 \lambda_1=2i\lambda_2=-2i,對應的特徵向量分別為 f_1(x)=\cos(2x)+i\sin(2x)f_2(x)=\cos(2x)-i\sin(2x)

Advertisement
This entry was posted in pow 特徵分析, 每週問題 and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s