每週問題 July 25, 2016

證明一個直覺的命題:若所有的 \mathbf{x} 使得 A\mathbf{x}=B\mathbf{x},則 A=B

Suppose that A and B are m\times n complex matrices. If A\mathbf{x}=B\mathbf{x} holds for every \mathbf{x}\in\mathbb{C}^n, prove that A=B.

 
參考解答:

證明 1. 令 \mathbf{e}_i=(0,\ldots,0,1,0,\ldots,0)^T 代表 \mathbb{C}^n 的第 i 個標準單位向量。因此,A\mathbf{e}_i=B\mathbf{e}_ii=1,\ldots,n,表明 AB 有相同的行 (column),即得證。

證明 2. 令 C=A-B。因為所有的 \mathbf{x}\in\mathbb{C}^n 使得 C\mathbf{x}=A\mathbf{x}-B\mathbf{x}=\mathbf{0}C 的零空間為 N(C)=\mathbb{C}^n。根據秩─零度定理,\hbox{rank}C=n-\dim N(C)=0,故 A-B=C=0

Advertisement
This entry was posted in pow 線性方程與矩陣代數, 每週問題 and tagged . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s