每週問題 May 15, 2017

反對稱矩陣的伴隨矩陣 (adjugate) 是對稱或反對稱矩陣。

Let A be an n\times n skew-symmetric matrix. Prove that \hbox{adj}A is a symmetric matrix for odd n and a skew-symmetric matrix for even n.

 
參考解答:

假設 A 是一個反對稱矩陣,A^T=-A,使用伴隨矩陣性質 \hbox{adj}(A^T)=(\hbox{adj}A)^T\hbox{adj}(-A)=(-1)^{n-1}\hbox{adj}A

(\hbox{adj}A)^T=\hbox{adj}(A^T)=\hbox{adj}(-A)=(-1)^{n-1}\hbox{adj}A

n 為奇數,則 (\hbox{adj}A)^T=\hbox{adj}A;若 n 為偶數,則 (\hbox{adj}A)^T=-\hbox{adj}A

Advertisement
This entry was posted in pow 行列式, 每週問題 and tagged , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s