搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Author Archives: ccjou
每週問題 June 26, 2017
對於秩-1方陣 ,證明 。 Let be an matrix and . Prove that .
每週問題 June 19, 2017
證明一個可逆矩陣存在 QR 分解。 Prove that an invertible matrix can be represented in the form , where is an orthogonal matrix and is an upper triangular matrix.
每週問題 June 12, 2017
證明 Gram-Schmidt 正交化定理。 Let be a basis of an inner product space. Prove that there exists an orthogonal basis such that for all .
每週問題 June 5, 2017
證明 是不可逆矩陣的一個充分條件。 Let and be matrices, where is an odd number. Prove that if then at least one of the matrices and is singular.
每週問題 May 29, 2017
這是零空間的包容關係與矩陣乘法的問題。 Let and be complex matrices of size and , respectively. If , prove that for some matrix .
每週問題 May 22, 2017
以伴隨矩陣的行列式表達分塊矩陣的行列式。 Suppose is , is , is , and is a number. Prove that .
每週問題 May 15, 2017
反對稱矩陣的伴隨矩陣 (adjugate) 是對稱或反對稱矩陣。 Let be an skew-symmetric matrix. Prove that is a symmetric matrix for odd and a skew-symmetric matrix for even .
每週問題 May 8, 2017
這是關於基底的一個充分條件問題。 Let be vectors in () such that for . Prove that any of these vectors form a basis of .
每週問題 May 1, 2017
證明嚴格對角佔優 (strictly diagonally dominant) 矩陣是可逆矩陣。 Let be an matrix. Prove that if for , then is invertible.
每週問題 April 24, 2017
證明矩陣積的值域與零空間的維數恆等式。 Let be an matrix and be an matrix. Prove that . Note that and denote the column space and nullspace of , respectively.