Category Archives: pow 線性方程與矩陣代數

每週問題 May 1, 2017

證明嚴格對角佔優 (strictly diagonally dominant) 矩陣是可逆矩陣。 Let be an matrix. Prove that if for , then is invertible. Advertisements

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged , , | Leave a comment

每週問題 April 17, 2017

這是網友范智忠提供的問題。 Let and be matrices. If , show that .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged , , | Leave a comment

每週問題 April 3, 2017

找出所有的可交換矩陣。 Find all matrices commuting with , where is the matrix all elements of which are equal to .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | Leave a comment

每週問題 March 27, 2017

若對角矩陣有相異對角元與某個矩陣是可交換的,則該矩陣也是對角矩陣。 Prove the following statements. (a) Let , where are distinct. If , then is a diagonal matrix. (b) Let , where are distinct and nonzero, and be an matrix, where . If and , then .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | Leave a comment

每週問題 December 26, 2016

證明一個特殊非負矩陣的逆矩陣也是非負矩陣。 Let be an real matrix. Show that and have all elements nonnegative if and only if each row and each column of has exactly one positive element and the rest of the elements are zeros.

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | 1 Comment

每週問題 December 12 , 2016

這是關於半幻方 (semi-magic) 矩陣的分解式問題。 An matrix is said to be a semi-magic matrix if the sums of the rows and columns are all equal. Show that a semi-magic matrix can be decomposed as such that for integer , .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | Leave a comment

每週問題 October 31, 2016

證明兩冪等矩陣 (idempotent matrix) 之差為冪等矩陣的一個充要條件。 Let and be idempotent matrices, i.e., and . Show that is idempotent if and only if .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | 1 Comment

每週問題 August 29, 2016

證明 Sherman-Morrison-Woodbury 公式的一個特例。 Let be an matrix, be an matrix and be an matrix. If and are symmetric positive definite, show the following identities. (a) (b)

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | 1 Comment

每週問題 August 1, 2016

利用冪等矩陣 (idempotent matrix) 計算分塊上三角矩陣的冪。 For the matrix , determine .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | Leave a comment

每週問題 July 25, 2016

證明一個直覺的命題:若所有的 使得 ,則 。 Suppose that and are complex matrices. If holds for every , prove that .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged | Leave a comment