Tag Archives: 交換子

證明細解 1

本文的閱讀等級:初級 表面上,數學證明是演繹法的舞台,但本質上,數學證明是一門具有歸納性質的實驗科學活動。面對數學證明問題,我們不僅希望了解各種可能的證明方法,還試圖理解這些證法背後的動機與思維。美國數學家波利亞 (George Polya) 在其名著《怎樣解題》(How to Solve It) 主張數學解題 (包括證明) 過程可分為下列四個階段。 了解問題:要知道未知數是什麼?已知數是什麼?條件是什麼? 擬定計畫:找出已知數與未知數之間的關係。如果這個關係不是很明確,可以嘗試考慮類似的問題。最後,我們應該能想出解題的計畫。 執行計畫:將解題計畫付諸實現,仔細檢查每一個步驟。 驗算與回顧:驗算所得的解答,檢驗每一個論證步驟是否正確。 我們按照波利亞的指點練習如何通過有效的提問激發想法,從而構思出證明計畫,跨越障礙直達問題的核心。從實踐面來看,最為困難的證明階段在於擬定計畫。我想到的一個應對方法是細解一些線性代數定理的精彩證明,以探索法 (heuristic) 對論證推理的每一個步驟作徹底的研究。   定理. 令 與 為 階矩陣。若 ,則 。 Advertisements

Posted in 線性代數專欄, 證明細解 | Tagged , , , | Leave a comment

交換子的充要條件

本文的閱讀等級:中級 令 為一 階矩陣。我們稱 為交換子 (commutator),如果存在 階矩陣 和 使得 (見“交換子與可交換矩陣”)。判定方陣 是否為交換子的方法非常簡單: 為交換子的一個充要條件是 。例如,單位矩陣 不是交換子,因為 。若 為交換子,使用跡數循環不變性 (見“跡數的性質與應用”),可得 。 下面證明:若 ,則 是一個交換子。證明包含三個部分,分述於下。

Posted in 線性代數專欄, 向量空間 | Tagged , | Leave a comment

每週問題 October 26, 2015

證明若 ,則 。 Let and be matrices such that . Show that .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged , | 3 Comments

每週問題 March 10, 2014

證明任一主對角元為零的方陣必可表示為交換子 。 Let be an matrix with for all . Show that there exist matrices and such that .

Posted in pow 線性方程與矩陣代數, 每週問題 | Tagged , | Leave a comment

海森堡不確定性原理的矩陣證明

本文的閱讀等級:高級 在量子力學裏,不確定性原理[1](uncertainty principle) 表明:粒子的位置與動量不可同時被確定,位置的不確定性 與動量的不確定性 遵守不等式 , 其中 , 是普朗克常數[2](Planck constant)。海森堡[3] (Werner Heisenberg) 在1927年發表的一篇論文裏,寫下 。 雖然他提到這公式可以從對易關係 (稍後將說明) 推導出來,但他並沒有寫出相關的數學論證,也沒有給予 和 確切的定義。同年,肯納德 (Earl Hesse Kennard) 首先證明不確定關係不等式,1929年羅伯森 (Howard Percy Robertson) 又從對易關係推導出相同的結論[4]。本文使用現代讀者熟悉的矩陣分析方法證明不確定性原理。由於我對量子力學幾乎一無所知,在提到相關知識的時候均盡量列舉引用出處以方便讀者參照查詢。文中若有錯誤,敬請不吝指正。

Posted in 線性代數專欄, 應用之道 | Tagged , , , , | 7 Comments

交換子與可交換矩陣

本文的閱讀等級:高級 我們知道矩陣乘法不總是滿足交換律,即 ,其中 和 是 階矩陣。但如果 ,我們說 和 是可交換矩陣 (或對易矩陣)。當矩陣具備清晰的幾何意義時,無須計算也很容易判斷它們是否為可交換矩陣。譬如,在二維空間 ,令旋轉矩陣 表示逆時針旋轉 角,伸縮矩陣 表示 軸伸縮 倍, 軸伸縮 倍,如下 (見“幾何變換矩陣的設計”): 。 從幾何直觀即可確定 ,而且若 ,則 。自然地,我們想探究:對於旋轉矩陣 ,甚至任意矩陣 ,哪些 滿足乘法交換律?不過說來奇怪,找尋可交換矩陣問題並不常見於線性代數教科書。是因為這個問題不值得討論,還是因為這個問題尚未被解決?值不值得討論屬於主觀認知,在此不予評論。不過客觀的事實是:僅使用基礎線性代數知識便可求出 的所有可交換矩陣 。為了探討可交換矩陣問題,我們定義交換子 (commutator,或稱對易算符) 為 與 的差,記為 。 若 ,則 , 和 是可交換矩陣。明顯地, 且 … Continue reading

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , , , | 3 Comments