Tag Archives: 值域對稱矩陣

值域對稱矩陣

本文的閱讀等級:中級 令 為一 階實矩陣。若 ,則 可正交對角化為 ,其中 是實正交矩陣 (orthogonal matrix),滿足 ,, 是 的特徵值 (見“實對稱矩陣可正交對角化的證明”)。以下令 , 表示 的行空間 (column space,即值域), 表示 的零空間 (nullspace)。本文介紹一種涵蓋對稱矩陣的特殊矩陣,稱為值域對稱矩陣 (range symmetric matrix),具有下列等價的界定性質: ,其中 是一 階可逆分塊, 是一正交矩陣。 直白地說,值域對稱矩陣 的行空間等於列空間 (即 ),零空間等於左零空間 (即 ),行空間正交於零空間,且 正交相似於 ,其中 是可逆分塊。當值域對稱矩陣 退化為一對稱矩陣時, 即為非零特徵值所組成的對角矩陣。若 … Continue reading

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , | Leave a comment