搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 冪零矩陣
每週問題 April 17, 2017
這是網友范智忠提供的問題。 Let and be matrices. If , show that .
每週問題 April 4, 2016
若 ,則 的最大秩是多少? Let be an matrix and . What is the maximum value of ?
每週問題 March 28, 2016
判定兩個冪零矩陣相似的充要條件。 Let and be nonzero matrices. (a) If , is it true that and are similar if and only if ? (b) If , is it true that and are similar if and only if ?
證明細解 1
本文的閱讀等級:初級 表面上,數學證明是演繹法的舞台,但本質上,數學證明是一門具有歸納性質的實驗科學活動。面對數學證明問題,我們不僅希望了解各種可能的證明方法,還試圖理解這些證法背後的動機與思維。美國數學家波利亞 (George Polya) 在其名著《怎樣解題》(How to Solve It) 主張數學解題 (包括證明) 過程可分為下列四個階段。 了解問題:要知道未知數是什麼?已知數是什麼?條件是什麼? 擬定計畫:找出已知數與未知數之間的關係。如果這個關係不是很明確,可以嘗試考慮類似的問題。最後,我們應該能想出解題的計畫。 執行計畫:將解題計畫付諸實現,仔細檢查每一個步驟。 驗算與回顧:驗算所得的解答,檢驗每一個論證步驟是否正確。 按照波利亞的指點,本文練習如何通過有效的提問激發想法,從而構思出證明計畫,跨越障礙直達問題的核心。從實踐面來看,最為困難的證明階段在於擬定計畫。我想到一個應對方法是細解一些線性代數定理的精彩證明,以探索法 (heuristic) 對論證推理的每一個步驟作徹底的研究。我假定讀者已經對線性代數有了初步理解,看底下這道證明問題: 定理. 令 與 為 階矩陣。若 ,則 。
可對角化的特殊矩陣
本文的閱讀等級:中級 令 為一個 階複矩陣,。若存在一個同階可逆矩陣 使得 為對角矩陣,其主對角元為 的特徵值,則 稱為可對角化 (diagonalizable), 稱為譜分解 (spectral decomposition,見“可對角化矩陣的譜分解”)。令 為 的相異特徵值組成的集合。下面列舉三個可對角化矩陣 的等價條件: 每一特徵值 的代數重數等於幾何重數 (見“可對角化矩陣與缺陷矩陣的判定”),即 (見“特徵值的代數重數與幾何重數”),這裡 表示矩陣 的零空間 (nullspace); 每一特徵值 的指標 (index) 等於 ,也就是說 的 Jordan 矩陣的每一個 Jordan 分塊的階數為 ,即純量 (見“Jordan 形式大解讀 (上)”); 最小多項式為 ,也就是說 (見“最小多項式 (下)”)。
冪矩陣的特徵值與特徵向量
本文的閱讀等級:中級 令 為 階矩陣, 為特徵值 (包含相重特徵值), 為對應的特徵向量。如果已知 的所有特徵值和對應的特徵向量,我們能否找出冪矩陣 ,,的所有特徵值和對應的特徵向量?使用 ,計算可得 故知 有特徵值 ,對應的特徵向量是 。這個結果是否表示我們已經找齊了 的特徵值與對應的特徵向量?看下面的例子: 的特徵值為 和 ,對應的特徵向量分別為 和 。然而, 的特徵值為 和 ,對應的特徵向量分別為 , 和 。冪矩陣 的特徵值確實是 ,但對應的特徵向量除了包含 的特徵向量外,還多一個線性獨立的特徵向量 。換一個說法, 不可對角化 (因為不存在 個線性獨立的特徵向量), 卻可對角化。為甚麼會有這樣奇怪的現象?下面我們就來探討冪矩陣的最大線性獨立的特徵向量數增多的原因。
每週問題 May 4, 2015
證明 階冪零 (nilpotent) 矩陣 滿足 。 A square matrix is said to be nilpotent if for some . Show that if is an nilpotent matrix, then .
每週問題 March 16, 2015
這是應用 Jordan 形式的證明問題,當然也有其他證法。 Prove that that is no matrix such that .
每週問題 March 9, 2015
試寫出所有可能的四階冪零矩陣 (nilpotent) 的 Jordan 形式。 Determine all possible Jordan forms for a nilpotent matrix.
矩陣與特徵值的指標
本文的閱讀等級:中級 在線性代數中,一 階複矩陣 可以視為線性算子 (linear operator),。線性算子 的值域是矩陣 的行空間,記作 ;線性算子 的核是矩陣 的零空間,記作 (見“線性變換與矩陣的用語比較”)。若 是一可逆矩陣,則 且 ,其中 。若 是不可逆矩陣,則 未能充滿整個 而且 包含非零向量,[1] 且 。秩─零度定理聲明矩陣的秩 (rank) 與零度 (nullity) 之和等於線性算子的定義域的維數 (見“運用輸入輸出模型活化秩─零度定理”): , 其中 ,。另一方面,容斥定理闡明兩個子空間與子空間和以及子空間交集的維數關係 (見“補子空間與直和”)。容斥定理套用至行空間 與零空間 ,如下: 。 因此,,可以推論 同義於 。這個時候,在向量空間 , 是 的一個補子空間,反之亦然,記作 … Continue reading