Tag Archives: 凸包

答William──關於凸包的映射問題

網友William留言: 老師,您好!我不是您的學生,但是又有一個問題苦無解決辦法,因此想向老師尋求協助。問題是這樣的:群組A內有 ,,五個點。其中 ,,, 為一矩形的四個端點,而 位於矩形的範圍內或邊線上。群組B內有 ,,五個點。現在假設存在一張對應表: 查表後的值為 ,,求 查表後的值 ,並以 ,,和 ,,表示。我不知道這個問題是否適合由線性代數解決,也不曉得應該從那裡下手。懇請老師提供意見。謝謝。 Advertisements

Posted in 答讀者問, 仿射幾何 | Tagged , , , , | Leave a comment

多胞形

本文的閱讀等級:中級 在最佳化領域,多胞形 (polytope) 是一種應用廣泛的特殊凸集[1]。多胞形可以存在於任何有限維的幾何座標空間,多邊形是二維多胞形,多面體是三維多胞形, 的多胞形稱為 多胞形。淺白地說,多胞形的邊界都是平的。本文討論的多胞形限定為有界閉集,定義如下:若 是屬於 的有限向量集,凸包 稱為一多胞形。因為凸包是凸集,凸包定義的多胞形自然是一有界閉凸集 (見“凸組合、凸包與凸集”)。本文將介紹多胞形的幾何性質,並推導有界閉凸集的一個重要定理,它指引了一條解決線性規劃問題的捷徑。

Posted in 線性代數專欄, 仿射幾何 | Tagged , , , | Leave a comment

凸組合、凸包與凸集

本文的閱讀等級:初級 幾何座標空間 的一個向量 表示該向量端點的座標。點與座標向量具有一對一的對應關係,因為這個緣故,我們經常以座標向量代表點。本文介紹一種別於子空間與仿射空間 (子空間的平移) 的向量集。我們稱一個向量集 是凸集 (convex set),若給定任兩點 和 ,點 屬於 。淺白地說,在凸集中,任兩個點皆可「看見」彼此,連接這兩點的直線段不含集合以外的點。見圖一的例子。比較特別的是, 所包含的子空間與仿射空間都是凸集。

Posted in 線性代數專欄, 仿射幾何 | Tagged , , , , | 5 Comments