Tag Archives: 分塊矩陣

每週問題 May 22, 2017

以伴隨矩陣的行列式表達分塊矩陣的行列式。 Suppose is , is , is , and is a number. Prove that . Advertisements

Posted in pow 行列式, 每週問題 | Tagged , | 1 Comment

每週問題 January 4, 2016

計算可交換矩陣構成的分塊矩陣的特徵值。 Let and be matrix. If , find the eigenvalues of .

Posted in pow 特徵分析, 每週問題 | Tagged , , | Leave a comment

每週問題 December 28, 2015

計算 的特徵值。 Let be an matrix. Find the eigenvalues of in terms of those of .

Posted in pow 特徵分析, 每週問題 | Tagged , | Leave a comment

每週問題 May 25, 2015

這是關於分塊矩陣行列式的計算問題。 Let , where and are square matrices of order and , respectively. Let be an matrix and be an matrix. Prove the following identities. (a) . (b) .

Posted in pow 行列式, 每週問題 | Tagged , | Leave a comment

零空間的快捷算法

本文的閱讀等級:初級 令 為一個 階矩陣。齊次方程 的所有解形成的集合稱為零空間 (nullspace) 或核 (kernel),記為 。在線性代數中,零空間的計算主要出現於求線性方程 的通解,以及方陣 () 對應特徵值 的 (非零) 特徵向量 使得 。本文介紹兩個基於簡約列梯形式 (reduced row echelon form) 的零空間快捷算法。

Posted in 線性代數專欄, 向量空間 | Tagged , , , | 12 Comments

答求知慾──關於分塊矩陣的冪矩陣

網友求知慾留言: 周老師您好:近期翻看線代啟示錄,關於分塊矩陣有些問題,請問是否能有方法將其作次方?若是普通矩陣可利用對角化作 次方,分塊矩陣則只翻閱到特殊矩陣的對角化,是否有其他分塊矩陣能夠利用對角化?或是有其他分法可以進行分塊矩陣的 次方?謝謝。

Posted in 特徵分析, 答讀者問 | Tagged , , , , | Leave a comment

每週問題 June 17, 2013

這是有關分塊矩陣行列式的等式證明。 Let be nonsingular and where , and are square matrices. Show that and

Posted in pow 行列式, 每週問題 | Tagged , | Leave a comment

每週問題 June 10, 2013

這是一個分塊矩陣的行列式問題。 Let be matrices. Show that if is nonsingular, then

Posted in pow 行列式, 每週問題 | Tagged , | Leave a comment

分塊矩陣的行列式

本文的閱讀等級:初級 我們知道二階行列式的計算公式為 , 那麼 階分塊矩陣的行列式 是否也有相同的公式?在一般情況下,相應的分塊矩陣的行列式公式並不存在,但如果 或 滿足某些特定條件,則有簡明的計算公式。回顧行列式的標準公式──排列公式 (或稱萊布尼茲公式,見“行列式的運算公式與性質”):若 為一個 階矩陣, , 其中 表示自然排序 的排列 (permutation), 若 經過偶數次換位 (transposition,即交換兩元位置) 可得自然排序, 若 經過奇數次換位可得自然排序。例如,若 ,換位過程如下: 從 經過三次換位得到自然排序,可知 。本文介紹一些常見的分塊矩陣的行列式公式,並使用排列公式、行列式基本性質,以及分塊矩陣乘法運算推導證明。

Posted in 線性代數專欄, 行列式 | Tagged , , | 3 Comments

不使用行列式的特徵值和特徵向量算法 (中)

本文的閱讀等級:中級 給定一 階矩陣 ,若 維向量 使得 ,即 ,則 稱為特徵值, 是對應的特徵向量。因為 的零空間包含非零向量,可知 不可逆,所以 。根據此事實,我們定義 的特徵多項式為 ,特徵值 即是 的根。從課堂演習的角度來看,這個基於行列式的特徵值算法的最大缺點在於,當 增大時,自行列式表達 到標準式 往往需要耗費大量的計算 (這解釋了何以多數線性代數教科書僅見 或 階的數值例子)。因為這個緣故,我們將箭頭瞄準不使用行列式的特徵值和特徵向量算法。下面先檢視幾種無須計算即可獲取特徵多項式的特殊形態矩陣,然後設法推導從任意矩陣至特殊形態矩陣的相似變換。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , , , | Leave a comment