Tag Archives: 列秩

答Avis──關於行秩等於列秩的幾何背景

網友Avis留言: 老师你好,经常关注你的Blog“线性代数启示录”,很喜欢里面的内容。这里有一个问题想请教一下,是学习线性代数多年来觉得比较有意思的地方,为什么矩阵的行秩等于列秩?当然我这里问的不是怎么证明,而是想问是否有更为本质的几何和物理背景?对于几何背景不限于行空间的维数等于列空间维数这样的,而是更想知道到底是怎么样一种结构,使得行列空间秩相同。我之前一直把这个结论,认为是数学的一种“巧合”。在这样的“巧合”之下我们对于一个矩阵就只用定义一个秩 (因为行列秩相同)。 Advertisements

Posted in 答讀者問, 向量空間 | Tagged , , , , , , | 2 Comments

利用 Gramian 矩陣證明行秩等於列秩

本文的閱讀等級:中級 線性代數的基本定理建立在一個重要磐石之上,即矩陣的行秩 (column rank) 等於列秩 (row rank),意思是矩陣的行空間維數等於列空間維數。據此,一 階矩陣 的行秩和列秩通稱為秩,記作 。過去我們曾經在“行秩=列秩”利用矩陣乘法運算證明矩陣 的列空間維數不大於行空間維數,;將不等式的 替換為 ,因為 ,可知 ,因此得證。另外,透過秩分解 (rank decomposition) ,其中 階矩陣 的行向量是 的行空間基底, 階矩陣 的列向量是 的列空間基底,我們也得以目視矩陣的行秩等於列秩 (見“秩分解──目視行秩等於列秩”)。本文再介紹一個優雅的證明,整個論證核心在於 , 其中 是 的共軛轉置, 為 階 Hermitian 矩陣,稱為 Gramian 矩陣 (見“特殊矩陣 (14):Gramian 矩陣”)。

Posted in 線性代數專欄, 向量空間 | Tagged , , , , , , | Leave a comment

秩分解──目視行秩等於列秩

本文的閱讀等級:初級 矩陣的行空間的維數稱為行秩 (column rank),列空間的維數稱為列秩 (row rank)。子空間的維數由最大的線性獨立的向量數決定,“行秩=列秩”一文曾基於此性質通過操作矩陣乘法運算證明了矩陣的行秩等於列秩。證明歸證明,讀者心中可能依然困惑:「矩陣的線性獨立行向量數怎麼會恰好等於線性獨立的列向量數呢?」本文再提供一個論證,想法很簡單:利用高斯消去法挑選出矩陣的線性獨立行與列,並以一個特殊分解式呈現獨立行與獨立列。這個證明屬計算導向,雖未直接表達行秩等於列秩的幾何特性,但由所得的矩陣分解式我們可以「目視」原矩陣的行空間和列空間,兩者確實擁有相等的基底向量數。

Posted in 線性代數專欄, 向量空間 | Tagged , , , , , , , , | 2 Comments

行秩=列秩

本文的閱讀等級:初級 令 為一個 階矩陣。我們定義 的行秩 (column rank) 為線性獨立的行向量數, 的列秩 (row rank) 為線性獨立的列向量數。下述性質成立:行秩等於列秩,故簡稱為秩 (rank),符號記為 。換句話說,矩陣 的行空間維數等於列空間維數,即有 。(註:在台灣,橫向稱為列,縱向稱為行。在中國大陸,橫向稱為行,縱向稱為列。)

Posted in 線性代數專欄, 向量空間 | Tagged , , , , , | 8 Comments