搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
Alexander Lin on 矩陣的四個基本子空間基底算法 snowmanfat (@snowman… on 基底變換 snowmanfat (@snowman… on 基底變換 王偉 on Givens 旋轉於 QR 分解的應用 猜猜看、 on 分塊矩陣的行列式 牟家宏 on Gram-Schmidt 正交化與 QR 分解 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 671 other subscribers
Tag Archives: 半正定矩陣
每週問題 January 16, 2017
這是兩個實對稱矩陣以相合變換同時可對角化問題。 Let and be real symmetric matrices, and , . If there exists a such that is a positive semidefinite matrix and , then there exists a nonsingular matrix such that both and are diagonal. Note that denotes the nullspace … Continue reading
每週問題 November 28, 2016
證明半正定矩陣的倒數矩陣為半正定的一個充要條件。 Let be an Hermitian and positive semidefinite matrix and with the property . Show that is positive semidefinite if and only if .
每週問題 November 21, 2016
證明兩個半正定矩陣之和的行列式大於或等於兩矩陣的行列式之和。 Let and be Hermitian and positive semidefinite matrices. Show that .
每週問題 November 14, 2016
證明一個常見於多變量統計學的矩陣 是半正定。 Let and let be a complex matrix of rank . Show that the Hermitian matrix is positive semidefinite.
每週問題 October 10, 2016
若半正定矩陣的一個主對角元等於零,則該列與行的所有元必為零。 Let be an Hermitian matrix. If is positive semidefinite and for some , show that for all .
每週問題 September 19, 2016
這是關於半正定矩陣的二次型等於零的問題。 Let be a real symmetric positive semidefinite matrix. If , show that .
每週問題 November 3, 2014
實對稱矩陣與反對稱矩陣的平方有甚麼性質? Let be an real matrix. Prove the following statements. (a) If is symmetric, then is positive semidefinite. (b) If is skew-symmetric, then is positive semidefinite.
共變異數矩陣的性質
本文的閱讀等級:初級 令 為一個隨機向量,其中 是隨機變數。共變異數矩陣 (covariance matrix) 定義如下: , 其中 是期望值算子,。根據定義, 為 階矩陣,具有下列形式: 共變異數矩陣 的 元是 和 的共變異數 (covariance,或稱協方差) 。因為 ,共變異數矩陣的主對角元即為隨機變數 的變異數 (variance)。本文介紹共變異數矩陣的一些基本性質。
每週問題 March 31, 2014
這是證明半正定矩陣和 Hermitian 矩陣乘積的特徵值必為實數。 Let and be Hermitian matrices. Prove that following statements. (a) If or is positive semidefinite, then all the eigenvalues of are real. (b) If and are positive semidefinite, then all the eigenvalues of are nonnegative.
Hermitian 矩陣乘積的性質
本文的閱讀等級:高級 在線性代數理論與應用中,Hermitian 矩陣可謂最重要的一種特殊矩陣。若一 階矩陣 滿足 ,我們稱之為 Hermitian,它具備下列美好的性質 (見“Hermitian 特殊矩陣 (9):Hermitian 矩陣”): 的特徵值 必為實數; 有 個完整的單範正交 (orthonormal) 特徵向量,也就是說, 可么正對角化 (unitarily diagonalizable) 為 ,其中 是么正矩陣,,。 對於 Hermitian 矩陣 和 , 與 未必是 Hermitian (除非 和 是可交換矩陣,見定理一)。本文將探討二個 Hermitian 矩陣乘積的一些性質,包括特徵值、跡數 (trace)、可對角化和相似性 ( 是否相似於 )。