搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 反 Hermitian 矩陣
每週問題 July 18, 2016
這是關於反對稱矩陣 (skew symmetric matrix) 與反 Hermitian 矩陣的問題。 Prove that each of the following statements is true. (a) If is skew symmetric, then for each . (b) If is skew Hermitian, then each is a pure imaginary number. (c) If is … Continue reading
每週問題 May 11, 2015
證明反 Hermitian 矩陣的特徵值為純虛數。 Show that the eigenvalues of any skew-Hermitian matrix are pure imaginary number.
每週問題 February 2, 2015
本週問題關於 Cayley 變換。 Let be a skew Hermitian matrix. Show that Cayley transformation is a unitary matrix.
交換子與可交換矩陣
本文的閱讀等級:高級 我們知道矩陣乘法不總是滿足交換律,即 ,其中 和 是 階矩陣。但如果 ,我們說 和 是可交換矩陣 (或對易矩陣)。當矩陣具備清晰的幾何意義時,無須計算也很容易判斷它們是否為可交換矩陣。譬如,在二維空間 ,令旋轉矩陣 表示逆時針旋轉 角,伸縮矩陣 表示 軸伸縮 倍, 軸伸縮 倍,如下 (見“幾何變換矩陣的設計”): 。 從幾何直觀即可確定 ,而且若 ,則 。自然地,我們想探究:對於旋轉矩陣 ,甚至任意矩陣 ,哪些 滿足乘法交換律?不過說來奇怪,找尋可交換矩陣問題並不常見於線性代數教科書。原因是這個問題不值得討論,還是這個問題尚未被解決?值不值得討論屬於主觀認知,在此不予評論。不過客觀的事實是:僅使用基礎線性代數知識便可求出 的所有可交換矩陣 。為了探討可交換矩陣問題,我們定義交換子 (commutator,或稱對易算符) 為 與 的差,記為 。 若 ,則 , 和 是可交換矩陣。明顯地, 且 … Continue reading
Posted in 特徵分析, 線性代數專欄
Tagged 矩陣多項式, 跡數, Hermitian 矩陣, 反 Hermitian 矩陣, 可交換矩陣, 同時可對角化, 循環向量, 最小多項式, 交換子
3 Comments
轉置與共軛轉置
本文的閱讀等級:初級 矩陣具有加法與純量乘法運算。除了這兩個源自純量算術的運算,矩陣還有一個獨特的運算,稱為轉置 (transpose)。令 為 階矩陣。我們定義 的轉置,記作 ,為一個 階矩陣,其中 。換句話說,將 的列行對調即得轉置矩陣 ,如下例, 。 明顯地,。若 表示成分塊矩陣,則 不僅置換列行分塊,每一個分塊也必須隨之轉置,例如, 。 一般而言,轉置適用於實矩陣。在許多應用中,複矩陣的轉置常會附加共軛運算,稱為共軛轉置 (conjugate transpose)。複數 的共軛定義為 ,其中 且 。類似複數的共軛運算, 的共軛矩陣為 ,共軛轉置則為 ,或簡記為 。例如, 。 如同轉置運算,連續兩次共軛轉置不改變矩陣,。若 是實矩陣,共軛轉置退化成轉置,即 。下面我們討論 (共軛) 轉置與其他矩陣運算的結合,並介紹一些由 (共軛) 轉置所界定的特殊矩陣。
矩陣與複數的類比
本文的閱讀等級:高級 定義於向量空間 的任一線性變換可以用一個 階複矩陣表示 (參考某基底)。除了少數特殊矩陣,如對角矩陣、投影矩陣、旋轉矩陣,和鏡射矩陣等,學者經常無法清楚地掌握矩陣變換的確實行為,主要原因是人們很難想像高維 () 向量空間,遑論向量在這些空間中的變換。欲洞察任意方陣的映射行為雖非易事,但也不是全然無跡可循,本文介紹一個認識矩陣作為的方法──透過矩陣與複數的類比來區分界定重要的特殊方陣。對複矩陣陌生的讀者,請先閱讀背景文章 “從實數系到複數系”。
Posted in 線性代數專欄, 二次型
Tagged 複數, Hermitian 矩陣, SVD, 反 Hermitian 矩陣, 可交換矩陣, 奇異值分解, 極分解, 正定矩陣, 正交矩陣, 么正矩陣
21 Comments
特殊矩陣 (2):正規矩陣
本文的閱讀等級:中級 基礎線性代數曾經介紹實對稱矩陣是正交可對角化的 (orthogonally diagonalizable),即特徵向量組成完整的單範正交集 (orthonormal set),詳見“實對稱矩陣可正交對角化的證明”。還有哪些矩陣也是正交可對角化?要完整的回答此問題,必須將實數系延伸至複數系 (見“從實數系到複數系”)。令 為一個 階複矩陣。若 和 是可交換矩陣,即 , 則 稱為正規矩陣 (normal matrix)。正規矩陣最重要的等價性質是可么正對角化 (unitarily diagonalizable),非正規矩陣不可么正對角化。么正對角化是說 ,其中 是一個么正 (unitary) 矩陣,,且 是一個對角矩陣。
Posted in 特殊矩陣, 線性代數專欄
Tagged 特殊矩陣, 秩─零度定理, 跡數, Hermitian 矩陣, Schur 定理, 共軛對稱, 卡氏分解, 反 Hermitian 矩陣, 實對稱矩陣, 對角化, 正規矩陣, 正交矩陣
9 Comments