搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 四元數
內積與外積是怎麼來的?
本文的閱讀等級:初級 在歐幾里得空間 ,兩個向量的內積與外積是怎麼來的?從決定論 (determinism) 的觀點,內積與外積之所以如此定義,可以用先前的數學發展和事態來解釋。愛爾蘭數學家哈密頓 (William Rowan Hamilton) 於1843年提出四元數 (quaternion) 的概念。一個四元數是一個實數加上三個虛部 (見“四元數”),記為 ,其中 是實數,虛數單位 滿足基本公式 。1878年,英國數學家克利福德 (William Kingdon Clifford)[1] 出版 Elements of Dynamic,書中首次用純量積 (scalar product) 與向量積 (vector product) 表示兩個四元數的積。今天,我們習慣稱純量積為點積 (dot product) 或內積 (inner product),向量積則稱為外積或叉積 (cross product)。令 ,, 為 的標準單位向量。一個四元數可用純量─向量和表示為 ,其中 … Continue reading
四元數與三維空間旋轉
本文的閱讀等級:中級 愛爾蘭數學家哈密頓 (William Rowan Hamilton) 將複數 ,其中 是實數, 是虛數單位,延伸為四元數 (quaternion),即一個實數加上三個虛部, , 其中 是實數,虛數單位 滿足基本公式 。 任一複數 與單位複數 的乘積 可以解讀為點 在二維複數平面逆時針旋轉 徑度 (見“複數的矩陣表示”)。類似地,四元數亦可表示三維空間旋轉,不過這個性質不像複數蘊含平面旋轉那般明顯,因為實在難以想像處於 的四元數如何對 向量執行運算。
四元數
本文的閱讀等級:初級 四元數 (quaternion) 是愛爾蘭數學家哈密頓 (William Rowan Hamilton) 於1843年提出的數學概念。任一複數 可表示為實數與虛數之和,,其中 是實數, 是虛數單位。哈密頓明白複數可視為平面上的一個點,他一心想將這個概念延伸至三維空間。在三維空間中,每一個點可由其座標表示,即 3 個有序數 。哈密頓知曉這些點的加法與減法運算,但一直想不透該如何計算乘法與除法。1843年10月16日,哈密頓與夫人在前往都柏林愛爾蘭皇家學會主持會議的途中,沿著皇家運河 (Royal Canal) 旁的小徑散步經過 Brougham (又名 Broom) 橋,突然靈光乍現腦中冒出四元數的基本公式[1]。今天在 Brougham 橋西北方下側安置了一塊石頭牌匾記載這段往事 (刻文見[2])。哈密頓定義的四元數是一個實數加上三個虛部,如下: , 其中 是實數,虛數單位 滿足下列基本公式: 。