Tag Archives: 循環向量

交換子與可交換矩陣

本文的閱讀等級:高級 我們知道矩陣乘法不總是滿足交換律,即 ,其中 和 是 階矩陣。但如果 ,我們說 和 是可交換矩陣 (或對易矩陣)。當矩陣具備清晰的幾何意義時,無須計算也很容易判斷它們是否為可交換矩陣。譬如,在二維空間 ,令旋轉矩陣 表示逆時針旋轉 角,伸縮矩陣 表示 軸伸縮 倍, 軸伸縮 倍,如下 (見“幾何變換矩陣的設計”): 。 從幾何直觀即可確定 ,而且若 ,則 。自然地,我們想探究:對於旋轉矩陣 ,甚至任意矩陣 ,哪些 滿足乘法交換律?不過說來奇怪,找尋可交換矩陣問題並不常見於線性代數教科書。是因為這個問題不值得討論,還是因為這個問題尚未被解決?值不值得討論屬於主觀認知,在此不予評論。不過客觀的事實是:僅使用基礎線性代數知識便可求出 的所有可交換矩陣 。為了探討可交換矩陣問題,我們定義交換子 (commutator,或稱對易算符) 為 與 的差,記為 。 若 ,則 , 和 是可交換矩陣。明顯地, 且 … Continue reading

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , , , | 3 Comments

循環向量定理

本文的閱讀等級:高級 令 為一個 階矩陣。對於 維向量 ,如果向量集 構成 的一組基底,則 稱為 的一個循環向量 (cyclic vector)。任一方陣 未必總是存在循環向量,譬如,單位矩陣 ,因為對於所有 ,。本文證明循環向量定理,包含下列等價陳述: 有一個循環向量。 相似於一個相伴矩陣 (companion matrix)。 的最小多項式即為其特徵多項式。 若 和 是可交換矩陣,,則 是由 形成的矩陣多項式,即 , 是一個多項式。

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , , , , , | 6 Comments

不使用行列式的特徵值和特徵向量算法 (中)

本文的閱讀等級:中級 給定一 階矩陣 ,若 維向量 使得 ,即 ,則 稱為特徵值, 是對應的特徵向量。因為 的零空間包含非零向量,可知 不可逆,所以 。根據此事實,我們定義 的特徵多項式為 ,特徵值 即是 的根。從課堂演習的角度來看,這個基於行列式的特徵值算法的最大缺點在於,當 增大時,自行列式表達 到標準式 往往需要耗費大量的計算 (這解釋了何以多數線性代數教科書僅見 或 階的數值例子)。因為這個緣故,我們將箭頭瞄準不使用行列式的特徵值和特徵向量算法。下面先檢視幾種無須計算即可獲取特徵多項式的特殊形態矩陣,然後設法推導從任意矩陣至特殊形態矩陣的相似變換。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , , , | Leave a comment

利用循環子空間計算特徵多項式

本文的閱讀等級:中級 令 為一向量空間且 為一線性變換 (或稱線性算子)。線性變換 將子空間 映射至另一子空間 。子空間 和 未必存在甚麼關係,但如果 ,我們稱 是 的一個不變子空間 (invariant subspace),也就是說,對於任意 ,必定有 。我們可以將線性變換 限定於子空間 上,於是有了限定算子 (restriction) 的概念,以符號表示為 。不變子空間的最主要價值在於化簡線性變換表示矩陣 (見“從不變子空間切入特徵值問題”),本文介紹一個產生不變子空間的簡易方式,稱為循環子空間 (cyclic subspace),並解說如何利用循環子空間計算矩陣特徵多項式。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , | 2 Comments