Tag Archives: 循環子空間

Krylov 子空間法

本文的閱讀等級:中級 令 為一 階複矩陣, 為一 維非零向量。1931年,俄國應用數學家、海軍工程師克雷洛夫 (Aleksey Krylov) 提出一個創新的想法[1]:運用向量序列 ,稱為 Krylov 序列,計算 的特徵多項式。Krylov 序列的擴張稱為 Krylov 子空間 (或循環子空間),記為 。 明顯地, 是 的一個子空間,故必存在最小正整數 使得 可表示為 的線性組合。如果 , 定義 次多項式 。 因為 ,我們說 是 相對於 的消滅多項式 (annihilating polynomial)。運用類似最小多項式 (minimal polynomial) 的論證方式可證明 (見“最小多項式 (上)”):給定任何矩陣—向量對 … Continue reading

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , | 10 Comments

最小多項式的計算方法

本文的閱讀等級:高級 令 為一 階矩陣。若多項式 滿足 ,則 稱為 的一個消滅多項式。特徵多項式 是一般最常見的消滅多項式,此即 Cayley-Hamilton 定理 (見“Cayley-Hamilton 定理”)。最小多項式 是另一個特別的消滅多項式,它是 的所有消滅多項式中次數最小者。如果設定多項式的領先係數為 ,稱為首一多項式,則 有唯一的最小多項式。本文介紹三種最小多項式的計算方法:第一個方法來自定義;第二個方法計算 Jordan 形式的最大 Jordan 分塊階數;第三個方法基於循環子空間。為相互參照,我們用下例解說這三種方法的計算過程: 。

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , | 6 Comments

循環向量定理

本文的閱讀等級:高級 令 為一個 階矩陣。對於 維向量 ,如果向量集 構成 的一組基底,則 稱為 的一個循環向量 (cyclic vector)。任一方陣 未必總是存在循環向量,譬如,單位矩陣 ,因為對於所有 ,。本文證明循環向量定理,包含下列等價陳述: 有一個循環向量。 相似於一個相伴矩陣 (companion matrix)。 的最小多項式即為其特徵多項式。 若 和 是可交換矩陣,,則 是由 形成的矩陣多項式,即 , 是一個多項式。

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , , , , , | 6 Comments

不使用行列式的特徵值和特徵向量算法 (中)

本文的閱讀等級:中級 給定一 階矩陣 ,若 維向量 使得 ,即 ,則 稱為特徵值, 是對應的特徵向量。因為 的零空間包含非零向量,可知 不可逆,所以 。根據此事實,我們定義 的特徵多項式為 ,特徵值 即是 的根。從課堂演習的角度來看,這個基於行列式的特徵值算法的最大缺點在於,當 增大時,自行列式表達 到標準式 往往需要耗費大量的計算 (這解釋了何以多數線性代數教科書僅見 或 階的數值例子)。因為這個緣故,我們將箭頭瞄準不使用行列式的特徵值和特徵向量算法。下面先檢視幾種無須計算即可獲取特徵多項式的特殊形態矩陣,然後設法推導從任意矩陣至特殊形態矩陣的相似變換。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , , , | Leave a comment

利用循環子空間證明 Cayley-Hamilton 定理

本文的閱讀等級:中級 在“利用循環子空間計算特徵多項式”一文,我們介紹了循環子空間的基本知識,並運用它來化簡線性算子特徵多項式的計算程序。本文將探討如何利用循環子空間證明 Cayley-Hamilton 定理:設 為定義於有限維向量空間 的線性算子, 為其特徵多項式,則 ,其中 代表零變換。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , | Leave a comment

不變子空間──解構線性算子的利器

本文的閱讀等級:中級 設 是一個從向量空間 映至向量空間 的線性變換。若 ,我們稱 為定義於向量空間 的線性算子 (linear operator)。數學家發展出一個研究線性算子的方法,他們想像向量空間 可以分割成一組不交集的子空間 ,精確地說, 為這些不交集子空間的直和 (direct sum,見“補子空間與直和”): 。 對於任一 ,僅有唯一的 ,,能夠組合出 。為簡約符號,我們以 代表向量 經過 映射後得到的像 。利用線性變換的基本性質,可得 。 上式提示我們一個探索線性算子 的途徑:只要分別探討 在各個子空間 的行為即可對 的行為獲得完整的認識。實際的操作方式是令線性算子 限定於子空間 上,稱為限定算子 (restriction),記為 。限定算子成立的前提是任一 ,都有 ,即 ,滿足此性質的子空間 稱為 的不變子空間 (invariant … Continue reading

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , , , , | 12 Comments

利用循環子空間計算特徵多項式

本文的閱讀等級:中級 令 為一向量空間且 為一線性變換 (或稱線性算子)。線性變換 將子空間 映射至另一子空間 。子空間 和 未必存在甚麼關係,但如果 ,我們稱 是 的一個不變子空間 (invariant subspace),也就是說,對於任意 ,必定有 。我們可以將線性變換 限定於子空間 上,於是有了限定算子 (restriction) 的概念,以符號表示為 。不變子空間的最主要價值在於化簡線性變換表示矩陣 (見“從不變子空間切入特徵值問題”),本文介紹一個產生不變子空間的簡易方式,稱為循環子空間 (cyclic subspace),並解說如何利用循環子空間計算矩陣特徵多項式。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , , | 2 Comments