搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 循環子空間
Krylov 子空間法
本文的閱讀等級:中級 令 為一 階複矩陣, 為一 維非零向量。1931年,俄國應用數學家、海軍工程師克雷洛夫 (Aleksey Krylov) 提出一個創新的想法[1]:運用向量序列 ,稱為 Krylov 序列,計算 的特徵多項式。Krylov 序列的擴張稱為 Krylov 子空間 (或循環子空間),記為 。 明顯地, 是 的一個子空間,故必存在最小正整數 使得 可表示為 的線性組合。如果 , 定義 次多項式 。 因為 ,我們說 是 相對於 的消滅多項式 (annihilating polynomial)。運用類似最小多項式 (minimal polynomial) 的論證方式可證明 (見“最小多項式 (上)”):給定任何矩陣—向量對 … Continue reading
最小多項式的計算方法
本文的閱讀等級:高級 令 為一個 階矩陣。若多項式 滿足 ,則 稱為 的一個消滅多項式。我們最常見的消滅多項式就是特徵多項式 ,此即 Cayley-Hamilton 定理 (見“Cayley-Hamilton 定理”)。最小多項式 是另一個特別的消滅多項式,它是 的所有消滅多項式中次數最小者。如果設定多項式的領先係數為 ,稱為首一多項式,則 有唯一的最小多項式。本文介紹三種最小多項式的計算方法:第一個方法來自定義;第二個方法計算 Jordan 形式的最大 Jordan 分塊階數;第三個方法基於循環子空間。為相互參照,我用下例解說這三種方法的計算過程: 。
循環向量定理
本文的閱讀等級:高級 令 為一個 階矩陣。對於 維向量 ,如果向量集 構成 的一組基底,則 稱為 的一個循環向量 (cyclic vector)。任一方陣 未必總是存在循環向量,譬如,單位矩陣 ,因為對於所有 ,。本文證明循環向量定理,包含下列等價陳述: 有一個循環向量。 相似於一個相伴矩陣 (companion matrix)。 的最小多項式即為其特徵多項式。 若 和 是可交換矩陣,,則 是由 形成的矩陣多項式,即 , 是一個多項式。
不使用行列式的特徵值和特徵向量算法 (中)
本文的閱讀等級:中級 給定一 階矩陣 ,若 維向量 使得 ,即 ,則 稱為特徵值, 是對應的特徵向量。因為 的零空間包含非零向量,可知 不可逆,所以 。根據此事實,我們定義 的特徵多項式為 ,特徵值 即是 的根。從課堂演習的角度來看,這個基於行列式的特徵值算法的最大缺點在於,當 增大時,自行列式表達 到標準式 往往需要耗費大量的計算 (這解釋了何以多數線性代數教科書僅見 或 階的數值例子)。因為這個緣故,我們將箭頭瞄準不使用行列式的特徵值和特徵向量算法。下面先檢視幾種無須計算即可獲取特徵多項式的特殊形態矩陣,然後設法推導從任意矩陣至特殊形態矩陣的相似變換。
利用循環子空間證明 Cayley-Hamilton 定理
本文的閱讀等級:中級 在“利用循環子空間計算特徵多項式”一文,我們介紹了循環子空間的基本知識,並運用它來化簡線性算子特徵多項式的計算程序。本文將探討如何利用循環子空間證明 Cayley-Hamilton 定理:設 為定義於有限維向量空間 的線性算子, 為其特徵多項式,則 ,其中 代表零變換。
不變子空間──解構線性算子的利器
本文的閱讀等級:中級 設 是一個從向量空間 映至向量空間 的線性變換。若 ,我們稱 為定義於向量空間 的線性算子 (linear operator)。數學家發展出一個研究線性算子的方法,他們想像向量空間 可以分割成一組不交集的子空間 ,精確地說, 為這些不交集子空間的直和 (direct sum,見“補子空間與直和”): 。 對於任一 ,僅有唯一的 ,,能夠組合出 。為簡約符號,我們以 代表向量 經過 映射後得到的像 。利用線性變換的基本性質,可得 。 上式提示我們一個探索線性算子 的途徑:只要分別探討 在各個子空間 的行為即可對 的行為獲得完整的認識。實際的操作方式是令線性算子 限定於子空間 上,稱為限定算子 (restriction),記為 。限定算子成立的前提是任一 ,都有 ,即 ,滿足此性質的子空間 稱為 的不變子空間 (invariant … Continue reading
利用循環子空間計算特徵多項式
本文的閱讀等級:中級 令 為一向量空間且 為一線性變換 (或稱線性算子)。線性變換 將子空間 映射至另一子空間 。子空間 和 未必存在甚麼關係,但如果 ,我們稱 是 的一個不變子空間 (invariant subspace),也就是說,對於任意 ,必定有 。我們可以將線性變換 限定於子空間 上,於是有了限定算子 (restriction) 的概念,以符號表示為 。不變子空間的最主要價值在於化簡線性變換表示矩陣 (見“從不變子空間切入特徵值問題”),本文介紹一個產生不變子空間的簡易方式,稱為循環子空間 (cyclic subspace),並解說如何利用循環子空間計算矩陣特徵多項式。