Tag Archives: 收斂矩陣

Cesàro 矩陣序列

本文的閱讀等級:高級 給定一數列 ,Cesàro 數列定義為 ,其中 是 的前 項的平均數,如下: 。 Cesàro 數列因義大利數學家切薩羅 (Ernesto Cesàro) 而得名。若 ,我們說數列 是可累加的 (summable), 稱為 Cesàro 極限。若數列 收斂至 ,則對應的 Cesàro 數列 也收斂至 (證明見附註[1])。收斂性蘊含可累加性,但可累加性未必有收斂性。例如,震盪數列 不收斂,但對應的 Cesàro 數列收斂至 。Cesàro 數列可以推廣至矩陣序列。令 為一 階矩陣。若 存在,則稱 為可累加矩陣。(如果不取平均, 稱為 Neumann 無窮級數[2]。) 若 ,我們稱 … Continue reading

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , , , | Leave a comment

定常迭代法──線性方程的數值解法

本文的閱讀等級:中級 高斯消去法是當今最常被使用的線性方程解法 (見“高斯消去法”),它是一種直接法,即一次性地解決問題。對於一個 階方陣,高斯消去法耗用的運算量是 。如果我們面對的是一個大型的稀疏矩陣,這時可用迭代法來求解。所謂迭代法是指從一個初始估計值出發,尋找一系列近似解以期解決問題的方法。大致上,應用於解線性方程的迭代法可區分為兩類:定常迭代法 (stationary iterative method) 和 Krylov 法。定常迭代法相對古老,容易瞭解與實現,惟效果通常不佳。Krylov 法相對年輕,雖然較不易理解分析,但效果普遍優異。本文介紹定常迭代法,並討論其中三種主要方法。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , , , , , , , | 3 Comments

廣義收斂矩陣

本文的閱讀等級:高級 令 為一 階矩陣, 為其特徵值。若譜半徑 ,即所有特徵值都滿足 ,可以證明 ,我們稱 為收斂矩陣 (見“譜半徑與矩陣範數”)。考慮一般廣義收斂矩陣 使得 存在,但不必是零矩陣。運用 Jordan 形式分析可以推導出廣義收斂矩陣的存在條件及其收斂形式。設 的 Jordan 形式為 ,就有 。 Jordan 矩陣 為基本 Jordan 分塊 的直和,故冪矩陣 為 的直和 (見“Jordan 形式大解讀(上)”)。對於每一基本 Jordan 分塊 ,若 全都存在,則 存在,即知 存在。既然 的存在條件等同於 的存在條件,下面我們將焦點轉移至基本 Jordan 分塊的冪矩陣。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , | 6 Comments

譜半徑與矩陣範數

本文的閱讀等級:高級 若 ,我們知道 且 。讀者自然會問:矩陣是否也擁有類似的性質?矩陣範數 (matrix norm) 是一種矩陣「大小」的度量,我們不妨由此著手。令 為一 階矩陣,我們曾經證明:若 ,其中 可為任何標準矩陣範數 (稍後詳述),則 Neumann 無窮級數 收斂 (見“Neumann 無窮級數”)。然而 並非 收斂的必要條件,例如, 的特徵值皆為零且 ,但是 。除了矩陣範數,矩陣的特徵值也具有度量矩陣「大小」的功能。考慮特徵方程 ,則 ,故 決定了向量 的長度伸縮。令 為 的所有相異特徵值所成的集合,稱為矩陣譜 (spectrum),並令 為 的最大絕對特徵值,稱為譜半徑 (spectral radius),即 。 在複數平面上, 的所有特徵值都位於圓心在原點,半徑等於 的圓內。類似矩陣範數,譜半徑同樣可控制冪矩陣 的成長。本文討論兩個問題:(1) 如何利用譜半徑 … Continue reading

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , | Leave a comment

收斂矩陣

本文的閱讀等級:高級 令 為一 階矩陣。當 ,若 的每一個元都趨於零,亦即 ,我們稱 為收斂矩陣 (convergent matrix)。若 是可對角化矩陣,, 為特徵值構成的對角矩陣, 的各行為對應的特徵向量,冪矩陣 可表示成 ,其中 。 若每一特徵值都滿足 ,當 ,,即知 ,也就有 ,故 為收斂矩陣。若 是不可對角化矩陣,此性質仍然成立,本文介紹一個運用 Jordan 形式的證明方法。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , | Leave a comment

Neumann 無窮級數

本文的閱讀等級:中級 設 為一 階矩陣,若 ,則 可逆且 , 上式稱為 Neumann 無窮級數。通過證明此命題可以深入瞭解矩陣範數 (norm) 於分析冪矩陣級數收斂性的作用,運用類似手法也可解釋何以矩陣指數 必定收斂。

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , , | Leave a comment