Tag Archives: 散度

梯度、散度與旋度的恆等式

本文的閱讀等級:初級 令 是一開集, 是連續可微函數,且 是連續可微向量函數。純量函數 的梯度 (grad),向量函數 的散度 (div) 和旋度 (curl) 定義如下 (見“梯度、散度與旋度”): 。 本文整理出一些梯度、散度與旋度的恆等式,並提供證明。 Advertisements

Posted in 特別主題 | Tagged , , , , | 3 Comments

二梯度的外積的散度為零之證明

網友林聖興: 老師您好,看見有人對於“梯度、散度與旋度”第14條公式有疑問 (註:),我一時好奇,試著推演看看,答案是 ,沒錯! 以MathType打字,附檔裡面有彩色,我不大會用LaTeX的方式操作網頁回覆,寄給您參考。 div(grad f cross grad g)

Posted in 特別主題, 網友分享 | Tagged , | Leave a comment

梯度、散度與旋度

本文的閱讀等級:初級 向量算子是向量分析 (vector calculus 或 vector analysis) 的馱馬,最重要的算子包括梯度 (gradient)、散度 (divergence) 與旋度 (curl)。令 是一開集, 是一次連續可微函數 (以 表示),且 是定義於 的一 向量場 (vector field)。所謂向量場其實就是一個向量函數,例如, , 有些物理和微積分課本將向量場 表示為 , 其中 是 的標準單位向量 (線性代數慣用的對應記號為 )。為便利表達,我們將微分算子 (讀作nabla) 視為一向量: , 這裡 是偏微分算子。函數 的梯度 (grad),向量場 的散度 (div) 和旋度 … Continue reading

Posted in 特別主題 | Tagged , , , , , | 28 Comments