Tag Archives: 旋轉矩陣

答perlpython──關於二階旋轉矩陣的對角化問題

網友perlpython留言: 老師,你好。我想請問一下,關於二維空間的旋轉矩陣。它在角度等於0度和180度時,分別會有eigenvalue = 1,-1,這是很直觀從圖形上就可以得到的結果。此外,當角度是其他度數時,很明顯eigenvalue是不存在的,在實數系上因而沒辦法對角化。然而,當討論的區域是複數系時,對於旋轉矩陣而言,它是有辦法對角化的嗎?因為我在課本上只讀到,複數系有機會對角化,只是我不知道從何下手去討論?或是有背後的理論知識,如果有專有名詞,懇請老師稍微點一下,謝謝,感激不盡。 Advertisements

Posted in 特徵分析, 答讀者問 | Tagged , , , | Leave a comment

幾何變換矩陣的設計

本文的閱讀等級:初級 矩陣之所以成為研究線性變換的一個有效工具乃基於兩個事實:線性變換完全由基底的映射行為所決定,以及線性複合變換可表示為矩陣乘積 (見“線性代數的第一堂課──矩陣乘法的定義”)。本文運用這兩個性質來設計二維歐幾里得空間裡常用的一些幾何變換矩陣。

Posted in 線性變換, 線性代數專欄 | Tagged , , , , , | 3 Comments