Tag Archives: 最陡下降法

Krylov 子空間法──線性方程的數值解法 (三):共軛梯度法

本文的閱讀等級:高級 共軛梯度法 (conjugate gradient method) 是一個適用於實對稱正定矩陣的線性方程數值解法。顧名思義,共軛梯度法的核心是共軛 (conjugacy) 和梯度 (一階導數)。共軛能夠加快收斂,梯度則提供正交基底。因為這兩個特性,共軛梯度法的結構簡單優美,儲存量及運算量少,並且無須設定參數。對於大尺寸矩陣,我們往往無法使用直接法求解,譬如 Cholesky 分解 (見“Cholesky 分解”),這時候可以採用以迭代方式計算的共軛梯度法。此外,對於大型非線性最佳化問題,共軛梯度法也是最有效的數值算法之一。 Advertisements

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , | 2 Comments