搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 條件數
特徵值的擾動分析
本文的閱讀等級:高級 若論方陣最精華的本質,誠然非特徵值莫屬。特徵值決定了矩陣所代表的線性變換的固有特性。特徵值的絕對值 (或稱向徑) 表示線性變換的伸縮大小,特徵值的幅角則表示旋轉強弱 (見“解讀複特徵值”)。若 的所有特徵值的絕對值小於 ,則冪矩陣 將隨 增大而收斂至零矩陣 (見“收斂矩陣”)。若 的所有特徵值的實部是負數,當 ,矩陣指數 趨於零矩陣 (見“線性微分方程的穩定性”)。透過對矩陣特徵值的研究,不僅可以幫助我們了解矩陣的本質,還可以提供解讀複雜動態系統行為的線索。本文探討特徵值的擾動分析,也就是在引入擾動的情況下 (如數值計算的捨入誤差或來自線性系統外部的干擾),設法界定矩陣特徵值的變化範圍。我們將運用矩陣範數、對角化和三角化推導出兩個特徵值變異的上界[1]。
答張盛東──關於穩定算法的定義
網友張盛東留言: 如果老師有空希望老師可以討論一下數值線性代數中的穩定性 (stability) 和後向穩定性 (backward stability)。Trefethen 的 Numerical Linear Algebra 有兩句話特別令我費解[1]: A stable algorithm gives nearly the right answer to nearly the right question. A backward stable algorithm gives exactly the right answer to nearly the right question. 請問老師,如何理解這兩句話?這個定義不是太直觀,希望老師給個具體例子說明一下這兩句話的深意。
Hilbert 矩陣的逆矩陣
本文的閱讀等級:初級 Hilbert 矩陣 (因數學家希爾伯特 David Hilbert 得名) 是一 階矩陣,其中 ,。明顯地,Hilbert 矩陣 的所有 () 階領先主子陣 (principal submatrix) 都是 Hilbert 矩陣。下面是 階的例子: 。 Hilbert 矩陣是可逆矩陣,且逆元 皆為整數。Hilbert 矩陣的逆元有許多不同的表達式,下面可能是最簡明的一個公式: 。 當 ,逆 Hilbert 矩陣是 。 Hilbert 矩陣是一種特殊的 Cauchy 矩陣,本文利用已知的 Cauchy 矩陣逆矩陣公式來推導 Hilbert 矩陣的逆矩陣。
特徵值的連續性
本文的閱讀等級:高級 矩陣的特徵值為矩陣各元的連續函數嗎?是的,這是矩陣理論中相當重要的基本定理。本文將解釋其中的道理,並介紹可對角化矩陣特徵值的敏感分析。首先回顧連續函數的定義。對於任意 ,考慮向量函數 其中 ,。我們說向量函數 在任意點 是連續的,若每一 在 都是連續的。函數 的連續性定義如下:在點 ,若對於任何 ,都存在 使得如果 ,則 。
條件數
本文的閱讀等級:高級 當一個線性系統受到極微小的擾動即可引發方程解劇烈變化時,我們將無從信任計算結果,便稱它是病態系統 (見“病態系統”)。條件數 (condition number) 是矩陣運算誤差分析的基本工具,它可以度量矩陣對於數值計算的敏感性與穩定性,也可以用來檢定病態系統。本文通過一個簡單的線性方程擾動問題介紹條件數的推導過程,推演工具是矩陣範數 的定義所含的兩個不等式 (見“矩陣範數”): , 。
病態系統
本文的閱讀等級:初級 自1940年代末起,計算機科學的急速發展徹底改變了線性代數原本的純理論面貌,其中數值方法與分析──計算機科學與應用數學的交叉學科──就是將線性代數推廣至各類應用領域的主要推手。長久以來,學者早已察覺線性代數存在一些特有的數值計算問題,如果不設法解決這些問題,線性代數的應用恐怕只能流於空談。這篇短文從一個簡單的線性方程例子解釋何以矩陣的敏感性分析是一個無法逃避的研究課題,由此讀者可以體會誤差分析於數值線性代數的重要性。
利用偽逆矩陣解線性方程
本文的閱讀等級:高級 在“線性代數的原罪?”一文裡,我曾說: 長久以來我們的數學教育方式 (其他課目也差不了多少) 是先告訴學生有關「數學」的事,展示給他們看這個「數學」是如何運作的,下課前塞給學生一些問題,回家自己去練習。 這種學習方式是學校教育講求成本效率下的產物,誰也說不準到底有多少長遠效果。我認為的理想學習方式應該帶有濃厚的實驗與實踐色彩,也就是經由發現問題,嘗試提出解答,從而建立理論。