搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 極分解
正規矩陣的等價條件
本文的閱讀等級:高級 令 為一個 階矩陣。若 ,也就是說 和 可交換,則 稱為正規矩陣 (normal matrix)。例如,實對稱矩陣 、Hermitian 矩陣 、反共軛對稱矩陣 ,以及么正 (unitary) 矩陣 皆為正規矩陣 (見“特殊矩陣 (2):正規矩陣”)。目前已知的正規矩陣等價條件大約有 90 個[1],其中很多條件引用的概念相近,另有少許冷僻艱澀。本文挑選 25 個 (文獻[2]列舉出 70 個) 有關於特徵值、特徵向量、奇異值、跡數、範數、二次型、可交換、不變子空間 (invariant subspace)、正定、譜分解 (spectral decomposition),以及極分解 (polar decomposition) 等較具代表性的等價條件,並給出證明 (部分已刊登的證明僅提供連結)。
共變異數矩陣與常態分布
本文的閱讀等級:中級 常態分布 (normal distribution),也稱高斯分布 (Gaussian distribution),其機率密度函數為 , 其中 是平均數 (mean), 是變異數 (variance)。對於 ,多變量常態分布的形式如下 (見“ 多變量常態分布”): , 其中 是平均數向量, 是 階共變異數矩陣 (covariance matrix), 是 的行列式。常態分布是一種應用相當廣泛的連續型機率分布,原因之一是大自然產生的變數經常具有常態分布,譬如,某城市成年男子的身高,某田地產出的蘿蔔重量;另外,對於從母體隨機抽取出的樣本,當樣本數增大時,樣本平均數的分布逼近常態分布[1] (見“ 樣本平均數、變異數和共變異數”)。圖1為 的一個常態分布樣本。本文從線性代數觀點探討常態分布與共變異數矩陣的幾何涵義。
矩陣與複數的類比
本文的閱讀等級:高級 定義於向量空間 的任一線性變換可以用一個 階複矩陣表示 (參考某基底)。除了少數特殊矩陣,如對角矩陣、投影矩陣、旋轉矩陣,和鏡射矩陣等,學者經常無法清楚地掌握矩陣變換的確實行為,主要原因是人們很難想像高維 () 向量空間,遑論向量在這些空間中的變換。欲洞察任意方陣的映射行為雖非易事,但也不是全然無跡可循,本文介紹一個認識矩陣作為的方法──透過矩陣與複數的類比來區分界定重要的特殊方陣。對複矩陣陌生的讀者,請先閱讀背景文章 “從實數系到複數系”。
Posted in 線性代數專欄, 二次型
Tagged 複數, Hermitian 矩陣, SVD, 反 Hermitian 矩陣, 可交換矩陣, 奇異值分解, 極分解, 正定矩陣, 正交矩陣, 么正矩陣
21 Comments
特殊矩陣 (6):正定矩陣
本文的閱讀等級:中級 令 為一個 階實對稱矩陣。若每一 維非零實向量 皆使得 , 我們稱 為正定 (positive definite);若將上述條件放鬆為 , 則 稱為半正定 (positive semidefinite)。往下閱讀前,請你先舉個例子確定 是一個純量(實數)。改變正定和半正定的不等式方向就有 是負定或半負定的概念,也可以說 是正定或半正定。如果 可能是正值也可能是負值,則稱 是未定的 (indefinite)。
極分解
本文的閱讀等級:中級 任一 階實矩陣 都可以被分解為 , 稱為極分解 (polar decomposition),其中 是實正交 (orthogonal) 矩陣, 是實對稱半正定 (positive semidefinite) 矩陣。若 是一個複矩陣,則 是么正 (unitary) 矩陣, 是 Hermitian (共軛對稱) 半正定矩陣。
Posted in 線性代數專欄, 二次型
Tagged Hermitian 矩陣, Jacobian 矩陣, SVD, 奇異值分解, 極分解, 機器人學, 正定矩陣, 正交矩陣, 么正矩陣
5 Comments