Tag Archives: 正交補餘

每週問題 February 13, 2017

證明遍歷定理 (ergodic theorem)。 Let be a unitary matrix, i.e., . Prove that , where is the Hermitian projection matrix onto .

Posted in pow 內積空間, 每週問題 | Tagged , | 1 Comment

每週問題 June 6, 2016

若線性方程 是一致的,則 的行空間 (column space) 存在唯一一個解。 Let be an complex matrix. If is consistent for some , prove that there exists a unique solution in the column space of .

Posted in pow 內積空間, 每週問題 | Tagged , , | 1 Comment

每週問題 April 28, 2014

這是計算簡約列梯形式 (reduced row echelon form) 的問題。 Let . Determine the reduced row echelon form of .

Posted in pow 內積空間, 每週問題 | Tagged , , , | Leave a comment

矩陣的四個基本子空間的正交投影矩陣

本文的閱讀等級:中級 令 為幾何向量空間 的一個子空間,且 是 的正交補餘 (orthogonal complement),意思是 且 。換一個說法,任一 可唯一分解成 ,其中 ,,且 。令 表示映射至子空間 的 階正交投影矩陣。下列性質成立 (見“正交投影矩陣的性質與界定”): 對於每一 ,。 對於每一 ,。 是實對稱冪等矩陣,即 。 且 。 若 () 且 是 的一組基底,將所有的基底向量組成 階矩陣 ,正交投影矩陣 可由下列公式算得 (推導見“線代膠囊──正交投影矩陣”): 。 值得注意的是 不因所選擇的基底 (即 矩陣) … Continue reading

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , , , , , | 5 Comments

值域對稱矩陣

本文的閱讀等級:中級 令 為一 階實矩陣。若 ,則 可正交對角化為 ,其中 是實正交矩陣 (orthogonal matrix),滿足 ,, 是 的特徵值 (見“實對稱矩陣可正交對角化的證明”)。以下令 , 表示 的行空間 (column space,即值域), 表示 的零空間 (nullspace)。本文介紹一種涵蓋對稱矩陣的特殊矩陣,稱為值域對稱矩陣 (range symmetric matrix),具有下列等價的界定性質: ,其中 是一 階可逆分塊, 是一正交矩陣。 直白地說,值域對稱矩陣 的行空間等於列空間 (即 ),零空間等於左零空間 (即 ),行空間正交於零空間,且 正交相似於 ,其中 是可逆分塊。當值域對稱矩陣 退化為一對稱矩陣時, 即為非零特徵值所組成的對角矩陣。若 … Continue reading

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , | Leave a comment

答matrix67──關於二相似矩陣的行空間與零空間的關係

網友matrix67留言: 老師您好,二相似矩陣有相同的列空間和零空間嗎?因為二相似矩陣是同一個線性變換 在不同基底下的表示矩陣,所以直觀上來想二相似矩陣的列空間應該都是 ,零空間都是 。但是事實似乎不是的,那麼如何理解這個問題呢?同時那一個矩陣的列空間與零空間和線性變換的 image 與 kernel 是相同的呢?

Posted in 答讀者問, 向量空間 | Tagged , , , , , | Leave a comment

每週問題 March 11, 2013

這是從矩陣乘積的跡數判斷矩陣性質的問題。 Let be an real matrix. Prove the following statements. (a) If for every real matrix , then . (b) If for every real matrix with , then , where is any real number.

Posted in pow 內積空間, 每週問題 | Tagged , , , | 2 Comments

答andy6829──關於實矩陣的列空間是零空間的正交補餘

網友andy6829留言: 周老師您好,我最近從一本書籍 (有關錯誤更正碼的線性區塊碼) 看到作者對某個向量空間的敘述,但我左想右想還是不知道作者想表達的意思是什麼,可以請問老師下列的敘述代表著什麼意思呢? 對任何一個由 個線性獨立的列向量所組成的 矩陣 ,均存在一個由 個線性獨立的列向量組成的 矩陣 (為甚麼?),使得 的列空間的任意向量與 的列向量正交,並且任何與 的列向量正交的向量都在 的列空間中 (為甚麼?): 的列空間等於 的零空間。 我看過您所發表的〈行空間與零空間的互換表達〉,感覺好像和我所要問的問題很類似,但我還是百思不得其解,可以請老師給我一些提示 (hint),好使我了解其中的意義嗎?謝謝周老師的幫忙。

Posted in 答讀者問, 內積空間 | Tagged , , , , , | 1 Comment

線性變換觀點下的奇異值分解

本文的閱讀等級:中級 1960年代初以前,奇異值分解 (singular value decomposition,簡稱 SVD) 普遍被視為一個模糊的理論概念,原因在於當時並不具備實際可行的算法。自從美國計算機科學教授格魯布 (Gene Golub) 與卡韓 (William Kahan) 於1965年率先發表了第一個有效的算法後,奇異值分解的價值才逐漸受到學者肯定,至今已成為線性代數中應用最廣的矩陣分解式[1]。為甚麼奇異值分解這麼重要?這個問題可以從兩個層面加以剖析:奇異值分解的運作原理是甚麼?奇異值分解有哪些經典的應用?本文針對第一個問題提供部分解答。我們從線性變換觀點解釋奇異值分解的運算與意義,並藉此聯繫線性代數的一些核心概念,如值域、核、基本子空間、正交基底和座標變換。 (關於奇異值分解的推導和應用請參閱“奇異值分解專題”列舉的相關文章。)

Posted in 線性代數專欄, 二次型 | Tagged , , , , , , , , | 4 Comments

每週問題 December 3, 2012

本週問題是證明正交補餘的一些基本性質。 Let be a subspace of an inner product space . Prove the following statements. (a) . (b) . (c) . (d) .

Posted in pow 內積空間, 每週問題 | Tagged | Leave a comment