Tag Archives: 正交變換

每週問題 June 22, 2015

本週問題是證明正交變換的一些性質。 Let be a linear operator on an inner product space of dimension . If is an orthogonal transformation, i.e., , for every , prove the following statements. (a) for every . (b) for every eigenvalue of . (c) If … Continue reading

Posted in pow 內積空間, 每週問題 | Tagged | Leave a comment

每週問題 April 6, 2015

證明正交變換是一個線性變換。 If is a mapping on an inner product satisfying for all , show that is a linear transformation. Such a is called an orthogonal transformation.

Posted in pow 內積空間, 每週問題 | Tagged , | 4 Comments