Tag Archives: 正矩陣

特殊矩陣 (21):非負矩陣

本文的閱讀等級:高級 令 為一個 階實矩陣。若每一 ,我們稱 是正矩陣 (positive matrix),記為 。若每一 ,則 稱為非負矩陣 (nonnegative matrix),記為 。推廣至更一般的情況, 表示每一 , 表示每一 。因為 維實向量可視為 階實矩陣,故同樣有正向量和非負向量的概念。相反關係 和 也按類似方式定義。令 是 的所有相異特徵值所形成的集合,稱為矩陣譜 (spectrum),並令 是 的最大絕對特徵值,稱為譜半徑 (spectral radius),即 。若 是一個 階正矩陣,Perron 定理包含下列特徵值和特徵向量性質 (見“特殊矩陣 (18):正矩陣”): 譜半徑 是 的一個特徵值,稱為 Perron 根。 … Continue reading

Posted in 特殊矩陣, 線性代數專欄 | Tagged , , , , , , , | 4 Comments

特殊矩陣 (18):正矩陣

本文的閱讀等級:高級 令 為一 階實矩陣。若每一 ,我們稱 是正矩陣 (positive matrix),記為 。(注意,在其他文章我用 表示 是正定矩陣。) 若每一 ,則 稱為非負矩陣 (nonnegative matrix),記為 。推廣至更一般的情況, 代表每一 , 代表每一 。因為 維實向量可視為 階矩陣,故同樣有正向量和非負向量的概念。相反關係 和 也按類似方式定義。正矩陣和非負矩陣出現於許多應用問題中,例如,馬可夫過程 (見“馬可夫過程”) 和圖論模型的鄰接矩陣 (見“Google 搜尋引擎使用的矩陣運算”,“線性代數在圖論的應用 (一):鄰接矩陣”)。本文介紹 階正矩陣的特徵值和特徵向量性質,這些結果統稱為 Perron 定理[1]。

Posted in 特殊矩陣, 線性代數專欄 | Tagged , , , , , , , , , | 2 Comments