Tag Archives: 消滅多項式

矩陣多項式

本文的閱讀等級:初級 令 表示最高次為 的多項式所形成的集合。給定 , 以及方陣 ,我們定義矩陣多項式 。 例如, 且 ,矩陣多項式為 。 這篇短文討論矩陣多項式的加法、純量乘法及一般乘法,並證明消滅多項式 (annihilating polynomial) 的存在性,即對於任一方陣 ,存在一多項式 使得 。 Advertisements

Posted in 線性代數專欄, 向量空間 | Tagged , | Leave a comment

Krylov 子空間法

本文的閱讀等級:中級 令 為一 階複矩陣, 為一 維非零向量。1931年,俄國應用數學家、海軍工程師克雷洛夫 (Aleksey Krylov) 提出一個創新的想法[1]:運用向量序列 ,稱為 Krylov 序列,計算 的特徵多項式。Krylov 序列的擴張稱為 Krylov 子空間 (或循環子空間),記為 。 明顯地, 是 的一個子空間,故必存在最小正整數 使得 可表示為 的線性組合。如果 , 定義 次多項式 。 因為 ,我們說 是 相對於 的消滅多項式 (annihilating polynomial)。運用類似最小多項式 (minimal polynomial) 的論證方式可證明 (見“最小多項式 (上)”):給定任何矩陣—向量對 … Continue reading

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , | 10 Comments

每週問題 June 27, 2011

本週問題是利用最小多項式解矩陣方程。 Find all the matrices such that .

Posted in pow 特徵分析, 每週問題 | Tagged , | Leave a comment

最小多項式 (上)

本文的閱讀等級:中級 給定一 次多項式 對於任意 階方陣 ,我們可定義下列矩陣多項式: 多項式和矩陣之間存在重要的關係,這種關係表現在矩陣的消滅多項式 (annihilating polynomial),亦即 使得 。線性代數學者最常碰到的多項式就是方陣 的特徵多項式 ,我們不免好奇:特徵多項式 是否會消滅 ?答案是肯定的,,這個結果稱作 Cayley-Hamilton 定理 (證明見“Cayley-Hamilton 定理”和“Cayley-Hamilton 定理的一個代數證明方法”)。除了特徵多項式,還有其他可消滅方陣 的多項式,最小多項式 (minimal polynomial) 是其中最特別的一個。

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , , , | 6 Comments