搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 特徵向量
每週問題 September 28, 2015
證明方陣 的一個不變子空間中存在一特徵向量。 Let be an matrix. If is an invariant subspace of , i.e., for every , show that there exists a nonzero vector in such that .
利用 Vandermonde 矩陣證明相異特徵值對應線性獨立的特徵向量
本文的閱讀等級:初級 令 為一 階矩陣, 為特徵值 (包含相重特徵值), 為對應的特徵向量,即有 ,。本文介紹如何利用 Vandermonde 矩陣證明對應相異特徵值的特徵向量組成一線性獨立集。(此證法源於網友 Meiyue Shao 對“相異特徵值對應線性獨立的特徵向量之簡易證明”的回應。)
相異特徵值對應線性獨立的特徵向量之簡易證明
本文的閱讀等級:初級 令 為一個 階矩陣, 為特徵值, 為對應的特徵向量。本文證明這個重要的定理:對應相異特徵值的特徵向量組成一個線性獨立集。(其他證法見“可對角化矩陣與缺陷矩陣的判定”,“每週問題 June 11, 2012”,“利用 Vandermonde 矩陣證明相異特徵值對應線性獨立的特徵向量”。) 例如, 有特徵值 ,對應特徵向量 ,以及特徵值 (代數重數為 ),對應特徵向量 和 (幾何重數為 )。根據上述性質, 和 都是線性獨立集。
每週問題 August 25, 2014
這是關於矩陣積 和 的特徵值與特徵向量問題,及對角化問題。 Let and be matrices. Which of the following statements are true? (a) If and are real symmetric matrices, then and must have the same eigenvalues. (b) If is invertible, then and must have the same eigenvalues. (c) … Continue reading
每週問題 July 28, 2014
這是從特徵值推論矩陣性質的問題,修改自“台聯大2013年碩士班招生考試試題 (電機類工程數學C)”。 Consider a real matrix with three different eigenvalues . Which of the following statements are true? (a) The determinant of is . (b) There are three linearly independent eigenvectors. (c) The rank of is . (d) The trace … Continue reading
每週問題 June 30, 2014
這是揉合特徵值、特徵向量、線性方程和正交投影的問題,取自“台聯大2014年碩士班招生考試試題 (電機類工程數學D)”的部分試題。 Let and . (a) Find the general solution (also called the complete solution) of . (b) Find the distance from to the row space of .
每週問題 June 16, 2014
這是一個非常重要的命題:實對稱矩陣對應相異特徵值的特徵向量必定正交。 Let be a real symmetric matrix. If and are eigenvectors of , corresponding to distinct eigenvalues, show that and are orthogonal.
電影《心靈捕手》的數學問題 (二)
本文的閱讀等級:初級 話說麻省理工學院朗博教授為尋訪武林高手,特意在走廊黑板公布一道數學難題挑戰天下豪傑。果然此地臥虎藏龍,不知何方神聖匆匆留下正確解答,隨即消失無蹤 (見“電影《心靈捕手》的數學問題 (一)”)。這天朗博教授踏進教室,意外發現裡面擠滿了聞風而來的學生,大家都想探明這位神祕數學法師的真實身分。朗博教授用朗讀莎士比亞作品的語氣召喚法師摘下面具前來領獎: So without further adieu, come forward, silent rogue, and receive thy prize. 為了增添戲劇效果,現在還不是男主角威爾以數學大師之尊現身的時候。再說這個時機也不恰當,當下威爾因為打群架被抓進警察局。閒話休提,書歸正傳,本文要討論的問題是朗博教授身後黑板上的數學式。請先觀賞影片 (字幕見[1])。
右特徵向量與左特徵向量
本文的閱讀等級:中級 令 為一個 階矩陣。若 ,,滿足 ,我們稱 是 的一個特徵向量, 是對應的特徵值。淺白地說,特徵向量 經過矩陣 (線性變換) 映射得到的像 (image) 不改變方向,惟長度伸縮了 倍。尼采在《查拉圖斯特拉如是說》裡說: 知識的擁護者必須不僅愛他的敵人,同樣地也必須能夠恨他的朋友。假如你總是自認是一位學生,那麼你從一位老師所獲得的將是非常貧乏的。 尼采的意思是,學生應當審問慎思,才能分辨老師和課本說的話究竟是教條戒律還是客觀真理。在線性代數中,我們總是默認向量是行向量 (column vector),故習以為常地在矩陣的右邊乘一行向量。倘若我們在矩陣的左邊乘一列向量 (row vector),是否也可以平行發展出一套特徵向量與特徵值理論?雖然教科書鮮少提及,但矩陣左乘一列向量並不是一個毫無意義的幼稚想法,下面我們就來探討這個問題。
特徵向量是甚麽物,恁麽來?
本文的閱讀等級:初級 《南嶽懷讓禪師傳》記載: 祖問:「甚麽處來?」 曰:「嵩山來。」 祖曰:「甚麽物,恁麽來?」師無語,經八載忽然有悟,乃白祖曰:「某甲有個會處。」 祖曰:「作麽生?」 師曰:「説似一物即不中。」 唐代懷讓禪師為尋訪善知識跑去嵩山謁見惠安國師,惠安指點他參訪曹溪六祖。禮拜畢,六祖問:「你從何處來?」懷讓回:「我從嵩山來。」六祖又問:「你是甚麼東西?怎麼來的?」懷讓當下無言以對,經過八年參究,一天豁然開悟,便對六祖說:「我想通了。」六祖問:「怎麼樣?」懷讓回:「說是甚麼東西都不對。」 特徵向量甚麽處來?問既一般,答亦相似,翻開課本就可以找到答案,定義有兩種版本。 線性變換版:令 為一個向量空間, 是一個線性變換。若非零向量 滿足 ,則 稱為對應特徵值 的特徵向量。 矩陣版:令 為一個 階矩陣。若非零向量 滿足 ,則 稱為對應特徵值 的特徵向量。 若繼續追問:特徵向量是甚麽物,恁麽來?「説似一物即不中」提點我們不要死執一法 (定義),所以何妨「說似多物」,即便亂槍打鳥不中或許亦不遠矣。