搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 特徵多項式
Cayley-Hamilton 定理的一個錯誤「證明」
本文的閱讀等級:初級 在線性代數中,Cayley-Hamilton 定理可謂最令學者感到驚奇的定理之一:任一 階矩陣 的特徵多項式 消滅 ,即 , 是零矩陣。以 為例, 的特徵多項式為 Cayley-Hamilton 定理宣稱 。
每週問題 December 8, 2014
計算 Leslie 矩陣的特徵多項式。 The Leslie matrix is of the form . Show that the characteristic polynomial of is .
每週問題 September 22, 2014
這是從特徵多項式判斷行列式的問題。 Find given that has as its characteristic polynomial. (a) (b)
每週問題 June 9, 2014
這是計算四階矩陣的特徵值的交互乘積 的問題,取自“2013年台大資工所碩士班招生考試試題”。 Let If are eigenvalues of , determine .
Krylov 子空間法
本文的閱讀等級:中級 令 為一 階複矩陣, 為一 維非零向量。1931年,俄國應用數學家、海軍工程師克雷洛夫 (Aleksey Krylov) 提出一個創新的想法[1]:運用向量序列 ,稱為 Krylov 序列,計算 的特徵多項式。Krylov 序列的擴張稱為 Krylov 子空間 (或循環子空間),記為 。 明顯地, 是 的一個子空間,故必存在最小正整數 使得 可表示為 的線性組合。如果 , 定義 次多項式 。 因為 ,我們說 是 相對於 的消滅多項式 (annihilating polynomial)。運用類似最小多項式 (minimal polynomial) 的論證方式可證明 (見“最小多項式 (上)”):給定任何矩陣—向量對 … Continue reading
窮人的多項式求根法
本文的閱讀等級:初級 給定三次多項式 , 如何求得 的三個根?你可以購買一套商用數學軟體或使用校園授權軟體 (費用已經隱藏在繳交的學費中)。例如,MATLAB,輸入兩個指令: p = [1 -6 -72 -27]; r = roots(p) 馬上就得到答案: r = 12.1229 -5.7345 -0.3884 如果你近來阮囊羞澀或無法取得校園授權軟體,是否還有其他不用花錢的便捷方法?易經曰:「窮則變,變則通,通則久。」下面我介紹一個窮人的多項式求根法。首先我們要備妥一個免費的矩陣特徵值計算程式,譬如,具有多種功能的線上矩陣計算器 Online Matrix Calculator。在主畫面視窗鍵入三次多項式 的 階相伴 (companion) 矩陣 , 勾選 Eigenvalues/eigenvectors,按下 Calculate,可得三個特徵值,此即為三次多項式 的根。事實上,MATLAB 採用完全相同的多項式求根算法[1]。有錢或沒錢的差別待遇往往僅在於外表包裝不同而已。
矩陣相似於其逆的充要條件
本文的閱讀等級:高級 任一 階矩陣 相似於 (見“矩陣與其轉置的相似性”)。若 是一個實正交矩陣 (orthogonal matrix),,則 相似於 。我們不免好奇: 相似於 的充分以及必要條件是甚麼?考慮極端的情況:兩個相等的方陣必定相似。若 ,即 ,我們稱之為對合 (involutory) 矩陣 (見“特殊矩陣 (22):對合矩陣”)。除了對合矩陣,是否還有其他的 相似於 ?二人同心,其利斷金。若 ,其中 和 是對合矩陣,則 , 即知 相似於 。兩個對合矩陣的乘積不僅是矩陣相似於其逆的充分條件,也是必要條件。反向論證較為複雜,本文運用兩種特殊型態矩陣──Jordan 分塊和相伴 (companion) 矩陣──證明:若 相似於 ,則存在對合矩陣 和 使得 。
每週問題 December 2, 2013
若一矩陣的所有特徵值皆等於 ,則此矩陣相似於其逆矩陣。 Let be an matrix with characteristic polynomial . Show that is similar to its inverse.
答r2123b──關於矩陣與遞迴關係式的特徵多項式
網友r2123b留言: 老師:請問線代的特徵多項式 跟求解遞迴方程式 ,,的 時所用的特徵多項式有什麼關聯嗎?為什麼都叫特徵多項式?
半正定矩陣的判別方法
本文的閱讀等級:中級 令 為一個 階實對稱矩陣。若任一向量 使得二次型 ,我們稱 是正定 (positive definite) 矩陣 (見“特殊矩陣 (6):正定矩陣”)。若任一向量 皆滿足 ,則稱 為半正定 (positive semidefinite) 矩陣。本文介紹幾個半正定矩陣的判別方法。如欲將本文內容推廣至 Hermitian 複矩陣,僅須將實數系 替換為複數系 ,並且將轉置 替換為共軛轉置 即可。