Tag Archives: 矩陣函數

Jordan 分塊

本文的閱讀等級:中級 在線性代數中,所謂「相似家族」是指其中成員矩陣彼此具有相似關係。具體地說,若 和 同屬一個「相似家族」,即 相似於 ,則存在一可逆矩陣 使得 。相似是一種等價關係,相似變換下的不變性質包括:特徵多項式、最小多項式、特徵值、行列式、跡數、矩陣秩,以及 Jordan 典型形式 (見“相似變換下的不變性”)。Jordan 形式因創造人法國數學家約當 (Camille Jordan) 而得名。Jordan 分塊為一上三角矩陣,其中主對角元是相同常數,設為 ,主對角上標元 (superdiagonal) 都等於 ,其上的所有元為零,如下所示: 。 Jordan 矩陣是由 Jordan 分塊構成的分塊對角矩陣,或者說 Jordan 矩陣是 Jordan 分塊的直和 (direct sum),如下例: 。 Jordan 形式定理表明任一 階矩陣 必可表示為 Jordan 典型形式 (或稱 Jordan … Continue reading

Posted in 線性代數專欄, 典型形式 | Tagged , , , , , , , | 1 Comment

答求知慾──關於分塊矩陣的冪矩陣

網友求知慾留言: 周老師您好:近期翻看線代啟示錄,關於分塊矩陣有些問題,請問是否能有方法將其作次方?若是普通矩陣可利用對角化作 次方,分塊矩陣則只翻閱到特殊矩陣的對角化,是否有其他分塊矩陣能夠利用對角化?或是有其他分法可以進行分塊矩陣的 次方?謝謝。

Posted in 特徵分析, 答讀者問 | Tagged , , , , | Leave a comment

利用 Cayley-Hamilton 定理計算矩陣函數

本文的閱讀等級:中級 達文西說:「簡單是最終極的細緻。」(Simplicity is the ultimate sophistication.) 就數學而言,簡單不意味平庸,反而是優雅的體現。本文從一個簡單的問題開始,並致力於發展簡單的解法。令 ,求 。典型的問題通常有典型的解法,對角化 (diagonalization) 是目前最常用的冪矩陣算法。矩陣 有相異特徵值 和 ,對應特徵向量 和 ,故可對角化為 。 利用上式立得 。 不過,遺憾的是對角化並不適用於所有的矩陣。若 ,則 有兩個特徵值 ,但其特徵空間僅含一線性獨立向量 ,即知 不可對角化 (見“可對角化矩陣與缺陷矩陣的判定”)。針對不可對角化矩陣,典型的方法是分解出 的 Jordan 形式 ,接著計算 (見“利用 Jordan form 解差分方程與微分方程”)。表面上,計算冪矩陣並不很困難,使用 Jordan 典型形式似乎有些「小題大作」。倘若不採用 Jordan 分解,那麼還有其他方法嗎?繼續閱讀前,建議讀者先花個幾分鐘想一想。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , | 1 Comment

矩陣函數 (下)

本文的閱讀等級:高級 上文“矩陣函數 (上)”介紹了可對角化矩陣函數,簡述如下:設 為 階可對角化矩陣,,其中 為主對角特徵值矩陣 , 為特徵向量矩陣。若對於所有特徵值 ,函數 存在,我們定義矩陣函數 如下: 本文接續討論不可對角化矩陣函數。

Posted in 線性代數專欄, 典型形式 | Tagged , , | Leave a comment

矩陣函數 (上)

本文的閱讀等級:中級 給定二階方陣 ,如何計算 ?(取自交大資訊所2007年入學試題) 我們或許直覺認為 各元不過就是 對應元的餘弦函數,,上例為 。 這個定義的缺點在於 未能保留餘弦函數的一些美好性質。舉例而言,既然有 和倍角公式 ,我們自然希望任意方陣 的矩陣函數 和 同樣滿足 和 。但這要如何辦到呢?本文僅解說可對角化矩陣函數,不可對角化矩陣函數涉及 Jordan 形式,將留待下文詳細討論。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , | 14 Comments