Tag Archives: 矩陣平方根

二階方陣的平方根

本文的閱讀等級:中級 設 是一個 階矩陣。若同階矩陣 使得 ,我們稱 為 的一個平方根。對角化是矩陣平方根的標準算法。若 可對角化為 ,其中 是一個可逆矩陣, 的主對角元 為 的特徵值。若 是 的一個平方根,,則 是 的一個平方根。若 有兩兩相異的非零特徵值,則存在 個平方根 。但如果 有相重特徵值或 ,取決於 的 Jordan 典型形式, 可能不存在平方根,存在少於 或無窮多個平方根。特別的, 階矩陣的平方根公式相當簡單,原因在於其逆矩陣、特徵值與特徵向量都有容易處理的代數式。 Advertisements

Posted in 特徵分析, 線性代數專欄 | Tagged , | Leave a comment