搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 線代膠囊
線代膠囊──奇異值分解
本文的閱讀等級:中級 令 為一個 階複矩陣。下式稱為 的奇異值分解 (singular value decomposition,簡稱 SVD): , 其中 是一個 階么正矩陣 (unitary matrix),滿足 , 稱為左奇異向量; 是一個 階么正矩陣,滿足 , 稱為右奇異向量; 是一個 階矩陣,, 和 ,,稱為奇異值。 若 是實矩陣,只要將 改為 即可,這時 和 稱為正交矩陣 (orthogonal matrix)。下面介紹一個簡短的奇異值分解推導法。
線代膠囊──正交投影矩陣
本文的閱讀等級:中級 令 階實矩陣 有線性獨立的行向量 (column vector)。如何求得 階正交投影矩陣 ,其值域為 的行空間? 線代箴言:「工欲善其事,必先利其器。」我們先討論正交投影矩陣的性質。這裡面包含兩個子問題:一般的投影矩陣有甚麼性質?加入正交條件後,又多了甚麼性質?投影矩陣 將 維向量 映射至 ,其中 是 的值域 (行空間),而且 經 的再次投影恆定不變 (投影兩次等於投影一次),即 。 因為 是任意向量,可知 ,稱為冪等矩陣 (idempotent matrix)。若 是一正交投影矩陣,投影後的殘量 必定正交於投影子空間 ,其中成員可表示為 (這裡 是一 維向量),於是有 。 因為 和 是任意向量,可知 。但 是對稱矩陣,故 。
線代膠囊──QR 分解
本文的閱讀等級:中級 假設 階實矩陣 有線性獨立的行向量 (column vector)。如何求得 QR 分解 ,其中 階矩陣 的行向量組成單範正交集 (orthonormal set), 為 階上三角矩陣? 將 和 以行向量表示,並以上三角矩陣 聯繫, 即為 。 乘開上式, 。 我們的問題要解出 和 。但這不是一般所見的線性方程組,該怎麼辦呢?
線代膠囊──線性變換表示矩陣
本文的閱讀等級:初級 令 是一個從向量空間 映至向量空間 的線性變換。如何將線性變換 表示成矩陣 ? 線代箴言:「基底無敵。」針對一個向量空間 ,一組基底 是屬於 的向量集,滿足兩個性質:第一, 是一個線性獨立集;第二, 的所有線性組合填滿 ,或者說 生成 (span) 。