搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 線性相關
每週問題 December 19, 2016
線性相關的向量集的一道線性組合問題。 Let be a vector space, , and let . Prove that if , then there exist scalars not all of them equal to zero such that and .
每週問題 March 7, 2016
Schwarz 不等式的等號成立的一個充要條件為兩個向量是線性相關的。 Let and be vectors in an inner product space, and denote the inner product of and . Prove that if (that is, the Schwarz inequality reduces to an equality), then and are linearly dependent.
線性獨立向量集的判定與算法
本文的閱讀等級:初級 令 為一個向量空間。給定向量集合 ,,若僅存在唯一的數組 使得 , 我們稱 是線性獨立的或線性無關的 (linearly independent),否則稱之為線性相關的或線性相依的 (linearly dependent)。線性獨立集不具有線性相關性,而線性相關集中至少有一個向量可表示為其餘向量的線性組合 (見“線性獨立俱樂部”)。假設 且 為 的一組基底。任一向量 與其參考基底 的座標向量 有一對一的對應關係 (見“同構的向量空間”)。具體地說,若 ,則 。為裨益矩陣運算,我們可以將每一 用座標向量 表示。底下討論針對座標映射後的幾何向量空間 。如欲延伸至 ,將轉置 改成共軛轉置 即可。 對於 ,其中 ,本文探討底下三個問題: 如何判定 是否為一個線性獨立集? 如何從 挑選出最大的線性獨立子集?也就是說,該線性獨立子集包含最多的向量? 如何增添向量至 的最大線性獨立子集使之成為 的一組基底?