Tag Archives: 線性變換

每週問題 January 9, 2017

這是一道線性變換的證明問題。 Let and be two vector spaces over the same field. Suppose and are two linear transformations such that for every , is s scalar multiple (depending on ) of . Prove that is a scalar multiple of .

Posted in pow 線性變換, 每週問題 | Tagged | Leave a comment

答王昭晴──關於線性代數之“線性”一詞的涵義

網友王昭晴留言: 老師您好,我最近在回顧過去所學的線性代數時開始有了一些問題。這些事過去不曾仔細思考過就當作一個名詞走馬看花的過去了。尤其是關於“線性”兩個字。為何要特別叫“線性”呢?我的意思是線性代數中一些定義會加註線性兩個字,例如線性向量空間 (linear vector space) 與方程式或者向量的線性組合 (linear combination)。為何要特別稱此二者為線性?難道有非線性的向量空間與非線性的組合嗎?而“線性”二字是否有除了線性方程式以外更深層的意思呢?還是說僅僅只是因為線性代數的發展是從線性方程式開始研究起,就稱作線性了呢?

Posted in 答讀者問, 線性變換 | Tagged , , | 5 Comments

每週問題 December 21, 2015

這是計算一線性變換的特徵值與特徵向量。 Let be an matrix, and be the linear transformation defined by . For , find the eigenvalues and corresponding eigenvectors of .

Posted in pow 特徵分析, 每週問題 | Tagged , , | Leave a comment

基本矩陣運算的定義

本文的閱讀等級:初級 德國數學家希爾伯特 (David Hilbert) 說[1]:「一個數學理論不被認為是完整的,直到你可以說得很清楚──你能解釋給第一個在街上相遇的人聽。」長久以來,這個問題一直困擾著許多線性代數初學者:基本矩陣運算,包括矩陣加法、純量乘法以及矩陣乘法,是如何被定義出來的?基本矩陣運算的數學原因既不是商業機密亦非神祕主義,矩陣與其基本運算源自於線性代數的核心運轉機制──線性變換 (linear transformation) 或稱線性映射 (linear mapping)。定義於有限維向量空間 (vector space),譬如,實座標向量空間 ,複座標向量空間 ,的線性變換可以用矩陣表示;矩陣加法、純量乘法與矩陣乘法分別對應線性變換的加法、純量乘法以及複合 (composition)。換句話說,線性變換涉及的所有計算工作都可以透過矩陣運算實現。有別於一般基礎線性代數教科書直接給出計算公式,本文從線性變換觀點定義基本矩陣運算,並利用此定義證明相關的運算法則。

Posted in 線性變換, 線性代數專欄 | Tagged , , | Leave a comment

答Vahi Chen──關於矩陣的轉置的線性變換表示矩陣

網友Vahi Chen留言: 周老师,您好!向您请教一个问题。我们知道: 线性变换可以表示为矩阵的乘积; 矩阵的转置是一个线性函数; 不存在一个矩阵 ,使得对于任意一个矩阵 ,都有 。 但若给定一个矩阵 ,我们是否总能找到一个矩阵 ,使其满足 ?而显然答案是否定的。考虑 ,满足该等式的 并不存在。所以,我的疑问是既然矩阵转置是线性函数,而线性函数又可以表示为矩阵的乘积,但针对上述的特例,这样的矩阵却有可能不存在。“可以表示”和“有可能不存在”这两者是否互为矛盾,或者这二者之间存在怎样的一种联系?是否可以说:“线性变换并不总是能表示为矩阵的乘积,因为这样的矩阵可能并不存在”?

Posted in 答讀者問, 線性變換 | Tagged , , | 1 Comment

每週問題 April 6, 2015

證明正交變換是一個線性變換。 If is a mapping on an inner product satisfying for all , show that is a linear transformation. Such a is called an orthogonal transformation.

Posted in pow 內積空間, 每週問題 | Tagged , | 4 Comments

答William──關於凸包的映射問題

網友William留言: 老師,您好!我不是您的學生,但是又有一個問題苦無解決辦法,因此想向老師尋求協助。問題是這樣的:群組A內有 ,,五個點。其中 ,,, 為一矩形的四個端點,而 位於矩形的範圍內或邊線上。群組B內有 ,,五個點。現在假設存在一張對應表: 查表後的值為 ,,求 查表後的值 ,並以 ,,和 ,,表示。我不知道這個問題是否適合由線性代數解決,也不曉得應該從那裡下手。懇請老師提供意見。謝謝。

Posted in 答讀者問, 仿射幾何 | Tagged , , , , | Leave a comment

線性變換的轉置

本文的閱讀等級:中級 令 為一個 階矩陣且 和 是 維向量。通過矩陣乘法,矩陣 將 維向量 映射至 維向量 。矩陣 是一個從幾何向量空間 映至 的線性變換,因為矩陣乘法滿足 且 , 是純量。類似地, 階轉置矩陣 (transpose) 是一個從 映至 的線性變換 (見“轉置矩陣的意義”)。既然每一個矩陣都是線性變換,我們可以反過來問:對於線性變換 ,其中 和 是有限維向量空間,如何定義線性變換 的轉置變換?1970年代以前出版的線性代數教本經常從線性變換的轉置來定義矩陣的轉置[1]。這套論述固然嚴謹扎實,但必須建立在線性泛函 (linear functional) 和對偶空間 (dual space) 的基礎上,對於非數學專業的讀者多少總會增加負擔,故現今大概只有專為數學系課程撰寫的教科書才會納入這個論點[2]。在開始討論之前,我們先回顧相關的線性泛函和對偶空間的預備知識 (詳見 “線性泛函與對偶空間”)。

Posted in 線性變換, 線性代數專欄 | Tagged , , , , , | Leave a comment

運用輸入輸出模型活化秩─零度定理

本文的閱讀等級:中級 令 為一個從向量空間 映射至向量空間 的線性變換, 稱為定義域 (domain), 稱為到達域 (codomain)。我們說 的值域 (range 或 image) 為 且 的核 (kernel) 或零空間 (nullspace) 為 。 值域 是 的一個子空間,零空間 是 的一個子空間 (見“子空間的辨識”)。假設 。如果 是 的一組基底,將它擴充為 的一組基底,,我們聲稱 組成 的一組基底。因為 ,我們只需要證明 是一個線性獨立集。考慮 。 因此,。但 是線性獨立集,意味 ,因此 ,推得 … Continue reading

Posted in 線性代數專欄, 向量空間 | Tagged , , , , , | Leave a comment

每週問題 December 30, 2013

本週問題是證明二同構的向量空間的基底存在唯一的線性映射。 Suppose the vector spaces and have bases and , respectively. Show that there is exactly one linear transformation with the property , for .

Posted in pow 線性變換, 每週問題 | Tagged , | Leave a comment