搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 行列式
每週問題 November 21, 2016
證明兩個半正定矩陣之和的行列式大於或等於兩矩陣的行列式之和。 Let and be Hermitian and positive semidefinite matrices. Show that .
不說廢話──克拉瑪公式的證明
本文的閱讀等級:初級 You know that I write slowly. This is chiefly because I am never satisfied until I have said as much as possible in a few words, and writing briefly takes far more time than writing at length. ― Carl Friedrich … Continue reading
每週問題 April 25, 2016
計算一個線性變換的跡數、行列式、特徵值與特徵向量。 Let be the vector space spanned by functions and . (a) Find the trace and determinant of the linear transformation from to . (b) Find the eigenvalues and corresponding eigenvectors of .
如何學好線性代數?
線性代數是美國數學教授哈爾莫斯 (Paul R. Halmos) 的專長,他在26歲時出版了一本經典教材《有限維向量空間》(Finite-Dimensional Vector Spaces)。哈爾莫斯於回憶錄《我要做數學家》(I Want to Be a Mathematician) 談到他第一次學習線性代數的悲慘遭遇[1]: 代數課很難,我讀得很生氣。…當我說生氣,我是真的生氣。Brahana 不知道如何說清楚,我們的教材是 Bôcher 的書 (我認為寫得一團糟),我花在這個科目的多數時間裡,我的情緒惱火到憤怒。…不知怎麼的,我的線性代數導論最後倖存下來。過了四、五年,在我取得博士學位,聽了諾伊曼 (von Neumann) 講的算子理論後,我才真正開始明白這個科目到底在講甚麼。 為甚麼線性代數這麼難?從哈爾莫斯說的這段話可以歸結兩個原因:第一是老師很爛,第二是課本很糟。如果學習一門科目的兩個重要 (必要?) 條件不是爛就是糟,我們還能冀望學好它嗎?不過話說回來,即使哈爾莫斯的線性代數啟蒙老師是數學大師諾伊曼,哈爾莫斯未必當下就能真正明白線性代數在講甚麼。我說的真正明白不是指考試拿高分,而是有一天你在洗澡時豁然開悟,奔出浴室光著身子在馬路上邊跑邊叫:「啊哈!我明白了!」 老實講,我不認為有哪個老師或哪本教科書可以讓學生「第一次學線代就上手」。真正全面性的理解線性代數需要時間,需要勤奮練習與堅持思考。
內積與外積是怎麼來的?
本文的閱讀等級:初級 在歐幾里得空間 ,兩個向量的內積與外積是怎麼來的?從決定論 (determinism) 的觀點,內積與外積之所以如此定義,可以用先前的數學發展和事態來解釋。愛爾蘭數學家哈密頓 (William Rowan Hamilton) 於1843年提出四元數 (quaternion) 的概念。一個四元數是一個實數加上三個虛部 (見“四元數”),記為 ,其中 是實數,虛數單位 滿足基本公式 。1878年,英國數學家克利福德 (William Kingdon Clifford)[1] 出版 Elements of Dynamic,書中首次用純量積 (scalar product) 與向量積 (vector product) 表示兩個四元數的積。今天,我們習慣稱純量積為點積 (dot product) 或內積 (inner product),向量積則稱為外積或叉積 (cross product)。令 ,, 為 的標準單位向量。一個四元數可用純量─向量和表示為 ,其中 … Continue reading
每週問題 September 14, 2015
計算 的導數。 Let be an matrix, where each entry is a differentiable function of . Prove that , where is identical to except that the entries in the column are replaced by their derivatives, i.e., if , if .
梯度、散度與旋度的恆等式
本文的閱讀等級:初級 令 是一開集, 是連續可微函數,且 是連續可微向量函數。純量函數 的梯度 (grad),向量函數 的散度 (div) 和旋度 (curl) 定義如下 (見“梯度、散度與旋度”): 。 本文整理出一些梯度、散度與旋度的恆等式,並提供證明。
每週問題 May 25, 2015
這是關於分塊矩陣行列式的計算問題。 Let , where and are square matrices of order and , respectively. Let be an matrix and be an matrix. Prove the following identities. (a) . (b) .
每週問題 April 27, 2015
這是利用行列式證明一特殊矩陣型態必定可逆的問題。 For any matrix , show that there exists a matrix such that is nonsingular.
每週問題 January 19, 2015
如果 和 的所有元為整數,則 有甚麼性質? Let be an matrix. If all entries of and are integers, show that .