搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 變異數
多變量常態分布
本文的閱讀等級:中級 在數學、統計學、物理和工程等領域,常態分佈 (normal distribution,Gaussian distribution) 是一個非常重要的連續型機率 (概率) 分布模型。本文將回答下列問題: 如何推導多變量常態分布的機率密度函數 (probability density function)? 怎麼證明服從常態分布的隨機向量的線性變換也為常態分布? 怎麼證明服從常態分布的多隨機變數的子集合亦為常態分布? 如何判別二組 (常態分布) 隨機變數集的獨立性? 具有常態分布的條件機率密度函數為何? 給定條件機率密度函數 ,如何計算 ? 為了避免繁瑣的積分運算,我們以動差生成函數 (moment generating function) 推演,這個方法的理論基礎在於動差生成函數唯一決定機率密度函數 (見“動差生成函數 (上)”)。下面先介紹標準多變量常態分布,隨後通過仿射變換 (affine transformation) 推廣至一般多變量常態分布。
Posted in 機率統計
Tagged 相關係數, 變異數, Jacobian 矩陣, Jacobian 行列式, 共變異數矩陣, 動差生成函數, 常態分布, 期望值, 正定矩陣, 仿射變換
Leave a comment
動差生成函數 (上)
本文的閱讀等級:中級 機率 (概率) 學的研究始於隨機實驗。考慮投擲一顆六面骰子,樣本空間是所有可能出現點數形成的集合。為了分析機率模型,我們定義隨機變數 為一個從樣本空間至實數系的函數。(本文沿用機率學的慣用符號,隨機變數以大寫斜體英文字母表示,矩陣則以大寫粗體英文字母表示。) 譬如,若骰子擲出 點,則設 ,因此 的值域為 。如果隨機變數 的值域為一有限集 或無限可數集 (包含無窮多個元素的集合,其中每一個元素唯一對應一個自然數),則 稱為離散型隨機變數。如果隨機變數 的值域為全部實數或由一部分區間組成,即 ,其中 ,則 稱為連續型隨機變數。本文討論內容限定於離散型隨機變數 (下篇將介紹連續型隨機變數的動差生成函數)。在機率學中,離散型隨機變數 的機率分布通常以兩種方式表示: 機率質量函數 (probability mass function) ,即 等於 的機率。在不造成混淆的情況下,我們經常稱機率質量函數為機率分布。 累積分布函數 (cumulative distribution function) ,即 不大於 的機率。顯然,。 本文將介紹第三種機率分布的描述方式,稱為動差生成函數或動差母函數 (moment generating function)。
共變異數矩陣與常態分布
本文的閱讀等級:中級 常態分布 (normal distribution),也稱高斯分布 (Gaussian distribution),其機率密度函數為 , 其中 是平均數 (mean), 是變異數 (variance)。對於 ,多變量常態分布的形式如下 (見“ 多變量常態分布”): , 其中 是平均數向量, 是 階共變異數矩陣 (covariance matrix), 是 的行列式。常態分布是一種應用相當廣泛的連續型機率分布,原因之一是大自然產生的變數經常具有常態分布,譬如,某城市成年男子的身高,某田地產出的蘿蔔重量;另外,對於從母體隨機抽取出的樣本,當樣本數增大時,樣本平均數的分布逼近常態分布[1] (見“ 樣本平均數、變異數和共變異數”)。圖1為 的一個常態分布樣本。本文從線性代數觀點探討常態分布與共變異數矩陣的幾何涵義。