搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 跡數
每週問題 April 17, 2017
這是網友范智忠提供的問題。 Let and be matrices. If , show that .
每週問題 March 6, 2017
證明 Hermitian 矩陣的秩與跡數不等式。 Let be an nonzero Hermitian matrix. Prove that .
每週問題 February 20, 2017
證明三階旋轉矩陣的一個跡數恆等式。 Let be a real orthogonal matrix and . Prove that .
每週問題 January 2, 2017
若 是一個二階方陣且 ,證明存在一個么正 (unitary) 矩陣 使得 的主對角元為零。 Let be a matrix and . Show that there exists a unitary matrix such that the diagonal elements of are equal to zero.
每週問題 April 25, 2016
計算一個線性變換的跡數、行列式、特徵值與特徵向量。 Let be the vector space spanned by functions and . (a) Find the trace and determinant of the linear transformation from to . (b) Find the eigenvalues and corresponding eigenvectors of .
每週問題 February 15, 2016
利用跡數 等價於 證明一些涉及 的代數性質。 Prove the following statements. (a) If is an complex matrix, then , and if and only if . (b) If are complex matrices and , then . (c) If , then . (d) If commutes with … Continue reading
交換子的充要條件
本文的閱讀等級:中級 令 為一 階矩陣。我們稱 為交換子 (commutator),如果存在 階矩陣 和 使得 (見“交換子與可交換矩陣”)。判定方陣 是否為交換子的方法非常簡單: 為交換子的一個充要條件是 。例如,單位矩陣 不是交換子,因為 。若 為交換子,使用跡數循環不變性 (見“跡數的性質與應用”),可得 。 下面證明:若 ,則 是一個交換子。證明包含三個部分,分述於下。
每週問題 November 30, 2015
若 同時是 的左逆與右逆,則 和 是同階方陣。 If and are two matrices such that and , show that .
每週問題 October 26, 2015
證明若 ,則 。 Let and be matrices such that . Show that .
正規矩陣的等價條件
本文的閱讀等級:高級 令 為一個 階矩陣。若 ,也就是說 和 可交換,則 稱為正規矩陣 (normal matrix)。例如,實對稱矩陣 、Hermitian 矩陣 、反共軛對稱矩陣 ,以及么正 (unitary) 矩陣 皆為正規矩陣 (見“特殊矩陣 (2):正規矩陣”)。目前已知的正規矩陣等價條件大約有 90 個[1],其中很多條件引用的概念相近,另有少許冷僻艱澀。本文挑選 25 個 (文獻[2]列舉出 70 個) 有關於特徵值、特徵向量、奇異值、跡數、範數、二次型、可交換、不變子空間 (invariant subspace)、正定、譜分解 (spectral decomposition),以及極分解 (polar decomposition) 等較具代表性的等價條件,並給出證明 (部分已刊登的證明僅提供連結)。