Tag Archives: 選擇公理

無限維向量空間的基底

本文的閱讀等級:高級 向量空間 的一組基底是一個向量集合 ,滿足兩個條件 (見“基底與維數常見問答集”): 是一個線性獨立集,即 蘊含 ; 生成 (span) ,即任何一個向量 可表示為 的線性組合,。 若基底是一個有限集,則 稱為有限維向量空間,否則稱為無限維向量空間。任何一個有限維向量空間都存在一組基底,維數定理 (dimension theorem) 聲明:有限維向量空間的任一組基底包含的向量數等於其他任何基底的向量數 (證明見[1],為了不中斷討論,證明都放在文末的註解)。根據維數定理,有限維向量空間 的維數定義為任何一組基底的基數 (cardinal number,集合的元素數),記為 。例如, 是所有的 維實向量 構成的向量空間,標準基底為 ,其中 是標準單位向量 (第 元為 ,其餘元為 ),故 。另外, 是所有的次數不大於 的複係數多項式 構成的向量空間,標準基底為 ,因此 。下面列舉幾個無限維向量空間[2]: 是複係數多項式 構成的向量空間; … Continue reading

Posted in 希爾伯特空間 | Tagged , , , , , | 7 Comments