Tag Archives: 邏輯斯回歸

邏輯斯回歸

本文的閱讀等級:中級 假設我們有一筆維數等於 ,樣本大小為 ,包含 個類別的數據 。數據點 散布在 空間,以 標記類別或代表類別的指標集,例如, 表示 來自 (歸屬) 第 類。我們的問題是利用給定的樣本 ,設計一個分類器 (classifier);具體地說,給定一個數據點 ,判定它應歸於何類。貝氏定理 (Bayes’ theorem) 提供了分類問題的理論基礎 (見“貝氏定理──量化思考的利器”): , 其中 是類別 出現的機率,稱為先驗機率 (priori probability); 是條件密度函數,即給定類別 ,數據點 的機率密度函數,也稱為似然 (likelihood); 是數據點 的機率密度函數,稱為證據 (evidence),算式為 ; 是指在給定數據點 的情況下,該點屬於 的機率,稱為後驗機率 (posterior probability)。 … Continue reading

Posted in 機器學習 | Tagged , , , , , , , , | 3 Comments