搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 關聯矩陣
克希荷夫矩陣─樹定理
本文的閱讀等級:高級 令 為一無向圖,其中 是頂點 (vertex) 集合, 是邊 (edge) 集合,頂點數 稱為圖 的階 (order)。每一條無向邊 (以下簡稱邊) 有兩個頂點為其端點 (endpoint)。因此,一邊 定義為 中兩頂點 和 組成的集合或無序對,記為 ,我們稱頂點 和 鄰接 (adjacent),並稱頂點 和 與邊 有關聯 (incident)。以下考慮簡單圖,意思是不存在自環 (self-loop),即一邊的兩端點為同一頂點,並且不存在重邊 (multiedge),即任意兩相異頂點至多僅存在一連接邊。若一圖的任兩頂點之間存在一序列鄰接頂點構成的連通路徑 (path),則稱為連通圖 (connected graph)。若 且 ,我們說 是圖 的一個子圖 (subgraph)。圖 的一個連通元件是指子圖 為一連通圖,但任意 和 … Continue reading
答Xiaoyang Su──關於歐拉多面體公式的線性代數證法
網友Xiaoyang Su留言: 請老師指點歐拉多面體公式:頂點數+面數=邊數+2,和綫性代數中的秩─零化度定理的關係是什麽?
費雪不等式
本文的閱讀等級:中級 英國統計學家、演化生物學家與遺傳學家費雪 (Ronald Fisher) 是現代統計學的創建者之一。今天我們使用的許多統計方法,例如,變異數分析 (方差分析,簡稱ANOVA)、最大似然估計與費雪線性判別等,都是他的發明貢獻。本文要探討的主題是在實驗設計時碰到的一個組合數學問題。考慮包含 個元素的集合 。令 為 的 個相異非空子集合。令 代表一集合 的基數 (cardinal number),即所包含的元素個數。 費雪不等式:若所有的 滿足 ,則 。 費雪的原始論文以組合數學解釋[1],本文討論多種線性代數證法,使用的基本工具包括矩陣秩、行列式、特徵值、線性獨立與正定 (類似應用見“有限體與模算術”)。
線性代數在圖論的應用 (二):關聯矩陣
本文的閱讀等級:初級 線性代數在圖論的應用建立於圖的矩陣表達。我們曾在“線性代數在圖論的應用 (一):鄰接矩陣”討論了鄰接矩陣 (adjacency matrix),本文將介紹另一個重要的矩陣表達──關聯矩陣 (incidence matrix)。令 為一個有向圖,其中 是頂點集合, 是有向邊集合。我們以 和 分別表示頂點和邊的總數,即 ,。有序對 表示邊 的起始頂點是 ,終止頂點是 ,即 。我們定義關聯矩陣 為一 階矩陣,其中 且 若 ,其餘元為零[1]。見下例: 此圖的關聯矩陣為 。