Tag Archives: 雙線性形式

內積與外積是怎麼來的?

本文的閱讀等級:初級 在歐幾里得空間 ,兩個向量的內積與外積是怎麼來的?從決定論 (determinism) 的觀點,內積與外積之所以如此定義,可以用先前的數學發展和事態來解釋。愛爾蘭數學家哈密頓 (William Rowan Hamilton) 於1843年提出四元數 (quaternion) 的概念。一個四元數是一個實數加上三個虛部 (見“四元數”),記為 ,其中 是實數,虛數單位 滿足基本公式 。1878年,英國數學家克利福德 (William Kingdon Clifford)[1] 出版 Elements of Dynamic,書中首次用純量積 (scalar product) 與向量積 (vector product) 表示兩個四元數的積。今天,我們習慣稱純量積為點積 (dot product) 或內積 (inner product),向量積則稱為外積或叉積 (cross product)。令 ,, 為 的標準單位向量。一個四元數可用純量─向量和表示為 ,其中 … Continue reading

Posted in 線性代數專欄, 內積空間 | Tagged , , , , | 1 Comment

Hermitian 矩陣與實對稱矩陣的一些實例

本文的閱讀等級:初級 令 為一個 階矩陣。若 ,其中 ,即 ,我們稱 為 Hermitian 矩陣 (見“特殊矩陣 (9):Hermitian 矩陣”)。若所有 都是實數,則 ,實 Hermitian 矩陣即為實對稱矩陣。Hermitian 矩陣和實對稱矩陣是目前應用最廣的特殊矩陣,原因有二:它們具備許多美好的特徵分析性質 (見“實對稱矩陣可正交對角化的證明”,“Hermitian 矩陣特徵值的變化界定”),以及它們「天生地」出現在多樣應用場合。下面列舉一些實例,包括 Hessian 矩陣、共變異數矩陣、鄰接矩陣、二次型和雙線性形式。

Posted in 線性代數專欄, 二次型 | Tagged , , , , , , , , | Leave a comment

內積的定義

本文的閱讀等級:初級 在幾何向量空間 ,向量 和 的點積 (dot product),或稱內積 (inner product),定義為 。 若將向量 與 寫成 階矩陣,即行向量 (column vector),則其內積可用矩陣乘積表示如下: 。 上式提示我們轉置矩陣的一個重要用途在於計算內積,稍後將詳細說明。多數讀者在中學時就被告知內積的定義,並學會如何用向量內積解決座標幾何問題以及計算物理學的合力與功。事實上,內積運算並不限定於具有幾何座標系統的向量空間,廣義向量空間也有合理的內積運算。溫故而知新,我們先嘗試從幾何向量找出內積定義的根基,進而將內積運算抽象推廣至廣義向量空間。

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , | 29 Comments