搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: 高斯─約當法
高斯消去法與高斯─約當法的運算量
本文的閱讀等級:初級 高斯消去法 (Gaussian elimination) 是當今普遍用於解線性聯立方程組的演算法。高斯─約當法 (Gauss-Jordan method) 是高斯消去法的一種變形,主要應用於計算逆矩陣。關於這兩個算法的詳細介紹,請見“高斯消去法”和“高斯─約當法”,本文僅討論它們耗費的運算量。
別再算逆矩陣了
本文的閱讀等級:初級 不知道從甚麼時候開始,“三階逆矩陣公式”經常雄踞本站「近期最多人點閱」表單的榜首,每日點閱該文的次數少則幾十,多則上百,下圖是過去一年的瀏覽次數統計 (主要的峰值所在的日期大致與台灣高等院校春秋二季期中和期末考試相吻合)。對於所見的逆矩陣風潮,我感到相當困惑:究竟出於甚麼樣的動機眾多年輕讀者願意不辭勞苦求算 (三階) 逆矩陣?如果尋覓逆矩陣公式的行動單純源於人類天生想要探索未知世界的好奇心,那我沒甚麼意見。不過,倘若只因為要解線性方程而計算逆矩陣,我可就忍不住要奉勸諸位:「省點力氣,別再算逆矩陣了!」
三角圖案矩陣的逆矩陣
本文的閱讀等級:初級 令 為一個 階矩陣。若所有的 滿足 ,則 稱為上三角矩陣;若所有的 滿足 ,則 稱為下三角矩陣。上三角矩陣的逆矩陣仍為上三角矩陣 (見“三角矩陣的逆矩陣”)。因為 ,下三角矩陣的逆矩陣也是下三角矩陣。在不失一般性的原則下,以下討論限定於下三角矩陣。若下三角矩陣 是可逆的,則 的主對角元必不為零,且 ,。少數的下三角矩陣的逆矩陣無須計算即可求得。如果所有的主對角元為 且僅有一行不為零,稱為原子下三角矩陣,逆矩陣可由反轉非主對角元的正負號得到,例如, 。 本文介紹一些具有特殊圖案的下三角矩陣的逆矩陣。以下設 和 為下三角矩陣。所有的例子表示為 ,並給出 的推導證明。因為 是下三角矩陣,故僅須證明對於 ,,其中 為 Kronecker 記號: 若 ; 若 。
高斯─約當法
本文的閱讀等級:初級 在解線性方程組的應用上,高斯─約當法[1] (Gauss-Jordan method) 是高斯消去法的延伸 (見“高斯消去法”),其目的要得到最簡約的列等價方程組。高斯消去法產生梯形矩陣後,我們可以繼續執行取代運算將軸元 (pivot) 上方的元悉數消去,並使用伸縮運算迫使軸元為 。高斯─約當法產生的矩陣稱為簡約列梯形式 (reduced row echelon form),由下列四個條件定義 (前兩個條件即為梯形矩陣的性質): 零列置於矩陣最底下。 每列軸元的位置都位於其上方各列軸元的右側。 軸元等於 。 軸元其上方與下方的元皆為零。 下面列舉兩個簡約列梯形式。數字 表示軸元,每一軸元上方和下方的元皆為零,其他各元 (以 表示) 可以是任意數: 。
三階逆矩陣公式
本文的閱讀等級:初級 給定 階矩陣 ,如果存在一個同階矩陣 使得 ( 表示 階單位矩陣),則 稱為可逆 (invertible) 或非奇異 (nonsingular) 矩陣。在這個情況下, 由 唯一決定[1],稱為 的逆矩陣或反矩陣,記作 。矩陣 存在逆矩陣的一個充要條件為其行列式不等於零,。若 階矩陣 是可逆的,則 (反之亦然),逆矩陣公式如下: 。 你可能好奇 階可逆矩陣的逆矩陣公式為何?底下介紹三個逆矩陣算法: 高斯─約當法 (Gauss-Jordan method), 伴隨矩陣 (adjugate) 衍生的行列式表達式, Cayley-Hamilton 定理導出的矩陣多項式。 我們先用這些方法推導 階逆矩陣公式,隨後再推廣至 階矩陣。