搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
Alexander Lin on 矩陣的四個基本子空間基底算法 snowmanfat (@snowman… on 基底變換 snowmanfat (@snowman… on 基底變換 王偉 on Givens 旋轉於 QR 分解的應用 猜猜看、 on 分塊矩陣的行列式 牟家宏 on Gram-Schmidt 正交化與 QR 分解 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 671 other subscribers
Tag Archives: Cayley-Hamilton 定理
每週問題 February 20, 2017
證明三階旋轉矩陣的一個跡數恆等式。 Let be a real orthogonal matrix and . Prove that .
Cayley-Hamilton 定理的一個錯誤「證明」
本文的閱讀等級:初級 在線性代數中,Cayley-Hamilton 定理可謂最令學者感到驚奇的定理之一:任一 階矩陣 的特徵多項式 消滅 ,即 , 是零矩陣。以 為例, 的特徵多項式為 Cayley-Hamilton 定理宣稱 。
二階方陣的平方根
本文的閱讀等級:中級 設 是一個 階矩陣。若同階矩陣 使得 ,我們稱 為 的一個平方根。對角化是矩陣平方根的標準算法。若 可對角化為 ,其中 是一個可逆矩陣, 的主對角元 為 的特徵值。若 是 的一個平方根,,則 是 的一個平方根。若 有兩兩相異的非零特徵值,則存在 個平方根 。但如果 有相重特徵值或 ,取決於 的 Jordan 典型形式, 可能不存在平方根,存在少於 或無窮多個平方根。特別的, 階矩陣的平方根公式相當簡單,原因在於其逆矩陣、特徵值與特徵向量都有容易處理的代數式。
每週問題 March 16, 2015
這是應用 Jordan 形式的證明問題,當然也有其他證法。 Prove that that is no matrix such that .
每週問題 May 19, 2014
本週問題是利用 Cayley-Hamilton 定理推導 階逆矩陣公式。 Let be a nonsingular matrix. Show that .
每週問題 March 17, 2014
這是運用 Hermitian 矩陣的正交對角化證明 Cayley-Hamilton 定理。 Let be an Hermitian matrix with eigenvalues , . Prove that .
每週問題 May 6, 2013
這是關於伴隨矩陣 的表達式問題。 Let be an matrix. (a) Show that can be expressed in the form , where ’s are matrices. (b) For the ’s defined in (a), show that , , are scalar matrices, i.e., for some scalar .
答鄧勇──關於λ-矩陣的伴隨矩陣關係式
網友鄧勇留言: 老师:您好!如何证明λ-矩阵和其伴随矩阵的关系式 呢?我百思不得其解,是否这个关系式根本就不成立?我已经看了“伴随矩阵”,内容都懂。我疑惑的是您在“Cayley-Hamilton 定理的一个代数证明方法”一文中,设 后,矩阵 则不是数字矩阵了,那么后面证明中要用到的主要关系式 对非数字矩阵依然成立吗?如果不成立,那么后面就得不到定理证明;如果主要关系式是正确的,又应该如何证明呢?显然它的证明与数字矩阵的证明是不一样的,对于它的证明,我试了很多方法,仍然证不出来,烦请老师给指点迷津。谢谢!
可逆矩陣之左逆矩陣等同右逆矩陣的證明
本文的閱讀等級:中級 令 為一個 階矩陣。若存在一個 階矩陣 使得 且 ,我們稱 是可逆矩陣 (invertible matrix),並稱 為 的逆矩陣 (inverse,或稱反矩陣),記作 。以上是多數線性代數教科書採用的逆矩陣定義。為了使定義完備,滿足前述關係的 必定由 唯一決定。假設 有左逆矩陣 使得 ,且 有右逆矩陣 使得 ,運用矩陣代數不難證明左逆矩陣 等同右逆矩陣 ,如下: 。 傳統的逆矩陣定義聲明 的左逆矩陣和右逆矩陣同時存在,但既然可逆矩陣的左逆和右逆確係相同,那麼何不採行更簡明的定義方式?譬如,若存在一個 階矩陣 使得 , 即為 的逆矩陣。如果我們接受這個新定義,緊接著就應當證明:若 ,則 。不過,證明過程不得假設 的左逆矩陣存在,否則新定義便與傳統定義無異。下面介紹基於簡約列梯形式、矩陣秩、基底、線性變換和 Cayley-Hamilton 定理的不同證明方法。如果讀者知道其他證法,也歡迎補充添加。
三階逆矩陣公式
本文的閱讀等級:初級 給定 階矩陣 ,如果存在一個同階矩陣 使得 ( 表示 階單位矩陣),則 稱為可逆 (invertible) 或非奇異 (nonsingular) 矩陣。在這個情況下, 由 唯一決定[1],稱為 的逆矩陣或反矩陣,記作 。矩陣 存在逆矩陣的一個充要條件為其行列式不等於零,。若 階矩陣 是可逆的,則 (反之亦然),逆矩陣公式如下: 。 你可能好奇 階可逆矩陣的逆矩陣公式為何?底下介紹三個逆矩陣算法: 高斯─約當法 (Gauss-Jordan method), 伴隨矩陣 (adjugate) 衍生的行列式表達式, Cayley-Hamilton 定理導出的矩陣多項式。 我們先用這些方法推導 階逆矩陣公式,隨後再推廣至 階矩陣。