搜尋(繁體中文或英文)
訊息看板
-
近期文章
線性代數專欄
其他主題專欄
每週問題
數據充分性問題
其他分類
Recent Comments
陳倍恩 on 線性代數的第一堂課──矩陣乘法的定義 輕鬆談如何教學二項式定理?… on 牛頓的二項式定理 (上) madhouse on 高斯消去法 WishMobile on 翻轉 LU 分解 周子傑 on Karush-Kuhn-Tucker (KKT) 條件 Cloud Huang on 線性泛函與伴隨 近期最多人點閱
分類
Archives
標籤雲
- Cayley-Hamilton 定理
- Frobenius 範數
- Gram-Schmidt 正交化
- Gramian 矩陣
- Hermitian 矩陣
- Householder 矩陣
- Jordan 典型形式
- LU 分解
- QR 分解
- Schur 定理
- SVD
- Vandermonde 矩陣
- 三角不等式
- 不變子空間
- 么正矩陣
- 二次型
- 代數重數
- 伴隨矩陣
- 內積
- 冪矩陣
- 冪等矩陣
- 冪零矩陣
- 分塊矩陣
- 列空間
- 半正定矩陣
- 反對稱矩陣
- 可交換矩陣
- 可逆矩陣
- 向量空間
- 圖論
- 基底
- 基本列運算
- 奇異值
- 奇異值分解
- 實對稱矩陣
- 對角化
- 座標變換
- 微分方程
- 投影矩陣
- 排列矩陣
- 旋轉矩陣
- 最小多項式
- 最小平方法
- 正交性
- 正交投影
- 正交矩陣
- 正交補餘
- 正定矩陣
- 正規矩陣
- 特徵值
- 特徵向量
- 特徵多項式
- 特殊矩陣
- 相伴矩陣
- 相似
- 矩陣乘法
- 矩陣多項式
- 矩陣指數
- 矩陣範數
- 矩陣譜
- 秩
- 秩─零度定理
- 簡約列梯形式
- 組合數學
- 線性獨立
- 線性變換
- 線性變換表示矩陣
- 行列式
- 行空間
- 譜分解
- 跡數
- 逆矩陣
- 通解
- 零空間
- 高斯消去法
線代線上影音課程
線代學習網站
線代電子書
- A First Course in Linear Algebra (Robert A. Beezer)
- Fundamentals of Linear Algebra (James B. Carrell)
- Linear Algebra (Jim Hefferon)
- Linear Algebra Done Wrong (Sergei Treil)
- Linear Algebra Problems (Jerry L. Kazdan)
- Linear Algebra via Exterior Products (Sergei Winitzki)
- Linear Algebra, Theory and Applications (Kenneth Kuttler)
- Matrix Analysis and Applied Linear Algebra (Carl D. Meyer)
- Notes on Linear Algebra (Peter J. Cameron)
矩陣計算器
LaTeX
Blogroll
-
Join 676 other subscribers
Tag Archives: Givens 旋轉
Jacobi 特徵值算法
本文的閱讀等級:中級 給定一個 階實矩陣 ,使用 Householder 變換可求得一個正交矩陣 (orthogonal matrix) ,,使得 為三對角 (tridiagonal) 矩陣,其中 , (見“特殊矩陣 (19):Hessenberg 矩陣”)。此外,如果 是實對稱矩陣,利用旋轉矩陣可求出一個正交矩陣 使得 為對角矩陣。因為 正交相似於 , 的主對角元即為 的特徵值。德國數學家雅可比 (Carl Gustav Jacob Jacobi) 於1846年公開這個對角化實對稱矩陣的計算方法,後人稱之為 Jacobi 特徵值算法。
Posted in 線性代數專欄, 數值線性代數
Tagged Bolzano-Weierstrass 定理, Givens 旋轉, Heine-Borel 定理, Jacobi 特徵值算法, 實對稱矩陣
3 Comments
特殊矩陣 (19):Hessenberg 矩陣
本文的閱讀等級:中級 令 為一 階矩陣。若 , ,則 稱為上 Hessenberg 矩陣,也就是說, 的主對角下標元 (subdiagonal,即 ) 之下的所有元為零。若 的主對角上標元 (superdiagonal,即 ) 之上的所有元為零,則稱為下 Hessenberg 矩陣。此特殊矩陣因德國工程師黑森貝格 (Karl Adolf Hessenberg) 而得名。見下例, 是上 Hessenberg 矩陣, 是下 Hessenberg 矩陣, 同時是上、下 Hessenberg 矩陣,稱為三對角 (tridiagonal) 矩陣 (見“特殊矩陣 (11):三對角矩陣”): 。 明顯地,對稱 Hessenberg 矩陣必定是三對角矩陣。下 … Continue reading
Posted in 特殊矩陣, 線性代數專欄
Tagged 特殊矩陣, 費布納西數列, Givens 旋轉, Hessenberg 矩陣, Householder 矩陣, LU 分解, QR 分解, QR 演算法
Leave a comment
QR 分解的數值計算方法比較
本文的閱讀等級:中級 QR 分解是數值線性代數中具備多種用途的計算工具,主要應用於線性方程、最小平方法和特徵值問題。常見的 QR 分解的計算方法包括 Householder 變換、Givens 旋轉以及 Gram-Schmidt 正交法。本文先回顧 QR 分解的主要性質,介紹 QR 分解於計算最小平方解的應用,並討論上述三種算法的運算量與數值穩定性。
Gram-Schmidt 正交化改良版
本文的閱讀等級:中級 設 為一個 階實矩陣,,QR 分解 滿足以下兩個條件: 是 階矩陣,其行向量 (column vector) 組成單範正交 (orthonormal) 向量集, 是 階上三角矩陣。Gram-Schmidt 正交化是最常見於一般線性代數教科書的 QR 分解演算法 (見“Gram-Schmidt 正交化與 QR 分解”),以下稱之為古典 (classical) Gram-Schmidt 正交化,簡稱 CGS。不幸的是,當數值計算引入捨入 (roundoff) 誤差時,CGS 最終產生的 矩陣的行向量正交性可能變的很糟,就此觀點而言,CGS 是數值不穩定的。本文介紹 CGS 的一個修改版本,稱為改良 (modified) Gram-Schmidt 正交化,簡稱 MGS[1,2]。
Givens 旋轉於 QR 分解的應用
本文的閱讀等級:中級 給定 平面上的旋轉矩陣 , 向量 表示 在平面上逆時針旋轉 弧度。假設 ,考慮這個問題:如何旋轉向量 至正X軸方向?
Posted in 線性代數專欄, 內積空間
Tagged Givens 旋轉, Gram-Schmidt 正交化, Householder 矩陣, QR 分解, 旋轉, 最小平方法, 正交矩陣
15 Comments