Tag Archives: Hessenberg 矩陣

Krylov 子空間法──線性方程的數值解法 (一):Arnoldi 與 Lanczos 算法

本文的閱讀等級:高級 令 為一 階複矩陣, 為一非零向量。向量序列 稱為 Krylov 序列,此序列所生成的子空間稱為 Krylov 子空間 (見“Krylov 子空間法”),記為 。 因為 是有限維空間 的一個子空間,當 不斷增大時,Krylov 序列 最終會是一個線性相關集。設 為最小的正整數使得 ,也就是說 為一個線性獨立集且 。因此,存在唯一數組 滿足 。 定義 次多項式 。 因為 ,我們稱 為 相對於 的最小 (消滅) 多項式 (minimal polynomial)。以下考慮 為可逆矩陣。我們可以斷定 ,否則有 ,即存在次數小於 … Continue reading

Posted in 線性代數專欄, 數值線性代數 | Tagged , , , , , , , , | 3 Comments

特殊矩陣 (19):Hessenberg 矩陣

本文的閱讀等級:中級 令 為一 階矩陣。若 , ,則 稱為上 Hessenberg 矩陣,也就是說, 的主對角下標元 (subdiagonal,即 ) 之下的所有元為零。若 的主對角上標元 (superdiagonal,即 ) 之上的所有元為零,則稱為下 Hessenberg 矩陣。此特殊矩陣因德國工程師黑森貝格 (Karl Adolf Hessenberg) 而得名。見下例, 是上 Hessenberg 矩陣, 是下 Hessenberg 矩陣, 同時是上、下 Hessenberg 矩陣,稱為三對角 (tridiagonal) 矩陣 (見“特殊矩陣 (11):三對角矩陣”): 。 明顯地,對稱 Hessenberg 矩陣必定是三對角矩陣。下 … Continue reading

Posted in 特殊矩陣, 線性代數專欄 | Tagged , , , , , , , | Leave a comment

利用牛頓恆等式聯繫特徵多項式係數與冪矩陣跡數

本文的閱讀等級:中級 令 為一 階矩陣。定義 的特徵多項式為 , 其中領先係數 ,稱為首一多項式 (monic polynomial)。有時候我們也定義特徵多項式為 ,這兩種定義的差異僅在於乘入常數 。以 為例,。令 代表 的特徵值,即 的三個根,所以 亦可表示為 比較 的兩種表達式,可得係數與根關係: 上式等號右邊 (不含負號) ,,稱為基本對稱函數 (見“特徵多項式蘊藏的訊息”)。

Posted in 特徵分析, 線性代數專欄 | Tagged , , , , , | Leave a comment