Tag Archives: Hölder 不等式

向量範數

本文的閱讀等級:中級 線性代數的許多概念與主題衍生自歐幾里得幾何。典型的一個作法是將 和 的幾何觀念推廣至高維座標空間 和 。譬如,畢氏定理可用來計算二維實向量 和三維實向量 的長度: , 稱為歐氏範數 (Euclidean norm)。類似地, 維向量長度也有相同的算式。對於 , 。 上式中,我們以向量內積來表達 維實向量的歐氏範數。同樣道理, 維複向量的歐氏範數應該用複向量內積表達。對於 ,歐氏範數定義為 。 若 ,其中 和 是實數,,則 ,即有 。所以, 確保複向量的歐氏範數 不為負值。

Posted in 線性代數專欄, 內積空間 | Tagged , , , , , | 4 Comments